

 Navigation

 	
 index

 	python-sounddevice, version 0.3.3

Play and Record Sound with Python

This Python [http://www.python.org/] module provides bindings for the PortAudio [http://www.portaudio.com/] library and a few
convenience functions to play and record NumPy [http://www.numpy.org/] arrays containing audio signals.

	Documentation:

	http://python-sounddevice.rtfd.org/

	Code:

	http://github.com/spatialaudio/python-sounddevice/

	Python Package Index:

	http://pypi.python.org/pypi/sounddevice/

	License:

	MIT – see the file LICENSE for details.

Requirements

	Python:

	Of course, you’ll need Python [http://www.python.org/].
Any version where CFFI (see below) is supported should work.
If you don’t have Python installed yet, you should get one of the
distributions which already include CFFI and NumPy (and many other useful
things), e.g. Anaconda [http://docs.continuum.io/anaconda/] or WinPython [http://winpython.github.io/].

	pip/setuptools:

	Those are needed for the installation of the Python module and its
dependencies. Most systems will have these installed already, but if not,
you should install it with your package manager or you can download and
install pip and setuptools as described on the pip installation [http://www.pip-installer.org/en/latest/installing.html] page.
If you happen to have pip but not setuptools, use this command:

python3 -m pip install setuptools --user

	CFFI:

	The C Foreign Function Interface for Python [http://cffi.readthedocs.org/] is used to access the C-API
of the PortAudio library from within Python. It supports CPython 2.6, 2.7,
3.x; and is distributed with PyPy [http://pypy.org/].
If it’s not installed already, you should install it with your package
manager (the package might be called python3-cffi or similar), or you can
get it with:

python3 -m pip install cffi --user

	PortAudio library:

	The PortAudio [http://www.portaudio.com/] library must be installed on your system (and CFFI must be
able to find it). Again, you should use your package manager to install it
(the package might be called libportaudio2 or similar).
If you prefer, you can of course also download the sources and compile the
library yourself. If you are using Mac OS X or Windows, the library will be
installed automagically with pip (see “Installation” below).

	NumPy (optional):

	NumPy [http://www.numpy.org/] is only needed if you want to play back and record NumPy arrays.
The classes sounddevice.RawStream, sounddevice.RawInputStream and
sounddevice.RawOutputStream use plain Python buffer objects and don’t need
NumPy at all.
If you need NumPy, you should install it with your package manager or use a
Python distribution that already includes NumPy (see above).
Installing NumPy with pip is not recommended.

Installation

Once you have installed the above-mentioned dependencies, you can use pip
to download and install the latest release with a single command:

python3 -m pip install sounddevice --user

If you want to install it system-wide for all users (assuming you have the
necessary rights), you can just drop the --user option.

To un-install, use:

python3 -m pip uninstall sounddevice

Usage

First, import the module:

import sounddevice as sd

Playback

Assuming you have a NumPy array named myarray holding audio data with a
sampling frequency of fs (in the most cases this will be 44100 or 48000
frames per second), you can play it back with sounddevice.play():

sd.play(myarray, fs)

This function returns immediately but continues playing the audio signal in the
background. You can stop playback with sounddevice.stop():

sd.stop()

If you know that you will use the same sampling frequency for a while, you can
set it as default using sounddevice.default.samplerate:

sd.default.samplerate = fs

After that, you can drop the samplerate argument:

sd.play(myarray)

Recording

To record audio data from your sound device into a NumPy array, use
sounddevice.rec():

duration = 10 # seconds
myrecording = sd.rec(duration * fs, samplerate=fs, channels=2)

Again, for repeated use you can set defaults using sounddevice.default:

sd.default.samplerate = fs
sd.default.channels = 2

After that, you can drop the additional arguments:

myrecording = sd.rec(duration * fs)

This function also returns immediately but continues recording in the
background. In the meantime, you can run other commands. If you want to check
if the recording is finished, you should use sounddevice.wait():

sd.wait()

If the recording was already finished, this returns immediately; if not, it
waits and returns as soon as the recording is finished.

Alternatively, you could have used the blocking argument in the first place:

myrecording = sd.rec(duration * fs, blocking=True)

By default, the recorded array has the data type 'float32' (see
sounddevice.default.dtype), but this can be changed with the dtype argument:

myrecording = sd.rec(duration * fs, dtype='float64')

Simultaneous Playback and Recording

To play back an array and record at the same time, use sounddevice.playrec():

myrecording = sd.playrec(myarray, fs, channels=2)

The number of output channels is obtained from myarray, but the number of
input channels still has to be specified.

Again, default values can be used:

sd.default.samplerate = fs
sd.default.channels = 2
myrecording = sd.playrec(myarray)

In this case the number of output channels is still taken from myarray
(which may or may not have 2 channels), but the number of input channels is
taken from sounddevice.default.channels.

Device Selection

In many cases, the default input/output device(s) will be the one(s) you want,
but it is of course possible to choose a different device.
Use sounddevice.query_devices() to get a list of supported devices.
The same list can be obtained from a terminal by typing the command

python3 -m sounddevice

You can use the corresponding device ID to select a desired device by assigning
to sounddevice.default.device or by passing it as device argument to
sounddevice.play(), sounddevice.Stream() etc.

Instead of the numerical device ID, you can also use a space-separated list of
case-insensitive substrings of the device name (and the host API name, if
needed). See sounddevice.default.device for details.

import sounddevice as sd
sd.default.samplerate = 44100
sd.default.device = 'digital output'
sd.play(myarray)

Callback Streams

Callback “wire” with sounddevice.Stream:

import sounddevice as sd
duration = 5 # seconds

def callback(indata, outdata, frames, time, status):
 if status:
 print(status, flush=True)
 outdata[:] = indata

with sd.Stream(channels=2, callback=callback):
 sd.sleep(duration * 1000)

Same thing with sounddevice.RawStream:

import sounddevice as sd
duration = 5 # seconds

def callback(indata, outdata, frames, time, status):
 if status:
 print(status, flush=True)
 outdata[:] = indata

with sd.RawStream(channels=2, dtype='int24', callback=callback):
 sd.sleep(duration * 1000)

Note

We are using 24-bit samples here for no particular reason
(just because we can).

Blocking Read/Write Streams

Instead of using a callback function, you can also use the blocking methods
sounddevice.Stream.read() and sounddevice.Stream.write() (and of course the
corresponding methods in sounddevice.InputStream, sounddevice.OutputStream,
sounddevice.RawStream, sounddevice.RawInputStream and
sounddevice.RawOutputStream).

More Examples

For more examples, have a look at the Example Programs.

Contributing

If you find bugs, errors, omissions or other things that need improvement,
please create an issue or a pull request at
http://github.com/spatialaudio/python-sounddevice/.
Contributions are always welcome!

Instead of pip-installing the latest release from PyPI, you should get the newest
development version from Github [http://github.com/spatialaudio/python-sounddevice/]:

git clone --recursive https://github.com/spatialaudio/python-sounddevice.git
cd python-sounddevice
python setup.py develop --user

This way, your installation always stays up-to-date, even if you pull new
changes from the Github repository.

If you prefer, you can also replace the last command with:

pip install --user -e .

... where -e stands for --editable.

If you used the --recursive option when cloning, the dynamic libraries for
Mac OS X and Windows should be available.
If not, you can get the submodule with:

git submodule update --init --recursive

If you make changes to the documentation, you can re-create the HTML pages
using Sphinx [http://sphinx-doc.org/].
You can install it and a few other necessary packages with:

pip install -r doc/requirements.txt --user

To create the HTML pages, use:

python setup.py build_sphinx

The generated files will be available in the directory build/sphinx/html/.

API Documentation

Play and Record Sound with Python.

http://python-sounddevice.rtfd.org/

	
sounddevice.play(data, samplerate=None, mapping=None, blocking=False, loop=False, **kwargs)[source]

	Play back an array of audio data.

	Parameters:	
	data (array_like) –
Audio data to be played back. The columns of a two-dimensional
array are interpreted as channels, one-dimensional arrays are
treated as mono data.
The data types float64, float32, int32, int16, int8
and uint8 can be used.
float64 data is converted to float32 before passing it to
PortAudio, because it’s not supported natively.

	mapping (array_like, optional) –
List of channel numbers (starting with 1) where the columns of
data shall be played back on. Must have the same length as
number of channels in data (except if data is mono).
Each channel may only appear once in mapping.

	blocking (bool, optional) –
If False (the default), return immediately (but playback
continues in the background), if True, wait until playback
is finished. A non-blocking invocation can be stopped with
stop() or turned into a blocking one with wait().

	loop (bool, optional) –
Play data in a loop.

	Other Parameters:

		samplerate, **kwargs –
All parameters of OutputStream (except channels,
dtype, callback and finished_callback) can be used.

See also

rec(), playrec()

	
sounddevice.rec(frames=None, samplerate=None, channels=None, dtype=None, out=None, mapping=None, blocking=False, **kwargs)[source]

	Record audio data.

	Parameters:	
	frames (int, sometimes optional) –
Number of frames to record. Not needed if out is given.

	channels (int, optional) –
Number of channels to record. Not needed if mapping or out
is given. The default value can be changed with
default.channels.

	dtype (str or numpy.dtype, optional) –
Data type of the recording. Not needed if out is given.
The data types float64, float32, int32, int16, int8
and uint8 can be used. For dtype=’float64’, audio data is
recorded in float32 format and converted afterwards, because
it’s not natively supported by PortAudio. The default value can
be changed with default.dtype.

	mapping (array_like, optional) –
List of channel numbers (starting with 1) to record.
If mapping is given, channels is silently ignored.

	blocking (bool, optional) –
If False (the default), return immediately (but recording
continues in the background), if True, wait until recording
is finished.
A non-blocking invocation can be stopped with stop() or
turned into a blocking one with wait().

	Returns:	numpy.ndarray or type(out) –
The recorded data.

Note

By default (blocking=False), an array of data is
returned which is still being written to while recording.
The returned data is only valid once recording has stopped.
Use wait() to make sure the recording is finished.

	Other Parameters:

		
	out (numpy.ndarray or subclass, optional) –
If out is specified, the recorded data is written into the
given array instead of creating a new array.
In this case, the arguments frames, channels and dtype are
silently ignored!
If mapping is given, its length must match the number of
channels in out.

	samplerate, **kwargs –
All parameters of InputStream (except callback and
finished_callback) can be used.

See also

play(), playrec()

	
sounddevice.playrec(data, samplerate=None, channels=None, dtype=None, out=None, input_mapping=None, output_mapping=None, blocking=False, **kwargs)[source]

	Simultaneous playback and recording.

	Parameters:	
	data (array_like) –
Audio data to be played back. See play().

	channels (int, sometimes optional) –
Number of input channels, see rec().
The number of output channels is obtained from data.shape.

	dtype (str or numpy.dtype, optional) –
Input data type, see rec().
If dtype is not specified, it is taken from data.dtype
(i.e. default.dtype is ignored).
The output data type is obtained from data.dtype anyway.

	input_mapping, output_mapping (array_like, optional) –
See the parameter mapping of rec() and play(),
respectively.

	blocking (bool, optional) –
If False (the default), return immediately (but continue
playback/recording in the background), if True, wait until
playback/recording is finished.
A non-blocking invocation can be stopped with stop() or
turned into a blocking one with wait().

	Returns:	numpy.ndarray or type(out) –
The recorded data. See rec().

	Other Parameters:

		
	out (numpy.ndarray or subclass, optional) –
See rec().

	samplerate, **kwargs –
All parameters of Stream (except channels, dtype,
callback and finished_callback) can be used.

See also

play(), rec()

	
sounddevice.wait()[source]

	Wait for play()/rec()/playrec() to be finished.

Playback/recording can be stopped with a KeyboardInterrupt [http://docs.python.org/3/library/exceptions.html#KeyboardInterrupt].

	Returns:	CallbackFlags or None –
If at least one buffer over-/underrun happened during the last
playback/recording, a CallbackFlags object is returned.

See also

get_status()

	
sounddevice.stop(ignore_errors=True)[source]

	Stop playback/recording.

This only stops play(), rec() and playrec(), but
has no influence on streams created with Stream,
InputStream, OutputStream, RawStream,
RawInputStream, RawOutputStream.

	
sounddevice.get_status()[source]

	Get information about over-/underflows in play()/rec()/playrec().

	Returns:	CallbackFlags –
A CallbackFlags object that holds information about the
last invocation of play(), rec() or playrec().

See also

wait()

	
sounddevice.query_devices(device=None, kind=None)[source]

	Return information about available devices.

Information and capabilities of PortAudio devices.
Devices may support input, output or both input and output.

To find the default input/output device, use default.device.

	Parameters:	
	device (int or str, optional) –
Numeric device ID or device name substring(s).
If specified, information about only the given device is
returned in a single dictionary.

	kind ({‘input’, ‘output’}, optional) –
If device is not specified and kind is 'input' or
'output', a single dictionary is returned with information
about the default input or output device, respectively.

	Returns:	dict or DeviceList –
A dictionary with information about the given device or – if
no device was specified – a DeviceList containing
one dictionary for each available device.
The dictionaries have the following keys:

	'name'

	The name of the device.

	'hostapi'

	The ID of the corresponding host API. Use
query_hostapis() to get information about a host API.

	'max_input_channels', 'max_output_channels'

	The maximum number of input/output channels supported by the
device. See default.channels.

	'default_low_input_latency', 'default_low_output_latency'

	Default latency values for interactive performance.
This is used if default.latency (or the latency
argument of playrec(), Stream etc.) is set to
'low'.

	'default_high_input_latency', 'default_high_output_latency'

	Default latency values for robust non-interactive
applications (e.g. playing sound files).
This is used if default.latency (or the latency
argument of playrec(), Stream etc.) is set to
'high'.

	'default_samplerate'

	The default sampling frequency of the device.
This is used if default.samplerate is not set.

Notes

The list of devices can also be displayed in a terminal:

python3 -m sounddevice

Examples

The returned DeviceList can be indexed and iterated over
like a normal tuple [http://docs.python.org/3/library/stdtypes.html#tuple] (yielding the abovementioned
dictionaries), but it also has a special string representation which
is shown when used in an interactive Python session.

Each available device is listed on one line together with the
corresponding device ID, which can be assigned to
default.device or used as device argument in play(),
Stream etc.

The first character of a line is > for the default input device,
< for the default output device and * for the default
input/output device. After the device ID and the device name, the
corresponding host API name is displayed. In the end of each line,
the maximum number of input and output channels is shown.

On a GNU/Linux computer it might look somewhat like this:

>>> import sounddevice as sd
>>> sd.query_devices()
 0 HDA Intel: ALC662 rev1 Analog (hw:0,0), ALSA (2 in, 2 out)
 1 HDA Intel: ALC662 rev1 Digital (hw:0,1), ALSA (0 in, 2 out)
 2 HDA Intel: HDMI 0 (hw:0,3), ALSA (0 in, 8 out)
 3 sysdefault, ALSA (128 in, 128 out)
 4 front, ALSA (0 in, 2 out)
 5 surround40, ALSA (0 in, 2 out)
 6 surround51, ALSA (0 in, 2 out)
 7 surround71, ALSA (0 in, 2 out)
 8 iec958, ALSA (0 in, 2 out)
 9 spdif, ALSA (0 in, 2 out)
 10 hdmi, ALSA (0 in, 8 out)
* 11 default, ALSA (128 in, 128 out)
 12 dmix, ALSA (0 in, 2 out)
 13 /dev/dsp, OSS (16 in, 16 out)

Note that ALSA provides access to some “real” and some “virtual”
devices. The latter sometimes have a ridiculously high number of
(virtual) inputs and outputs.

On Mac OS X, you might get something similar to this:

>>> sd.query_devices()
 0 Built-in Line Input, Core Audio (2 in, 0 out)
> 1 Built-in Digital Input, Core Audio (2 in, 0 out)
< 2 Built-in Output, Core Audio (0 in, 2 out)
 3 Built-in Line Output, Core Audio (0 in, 2 out)
 4 Built-in Digital Output, Core Audio (0 in, 2 out)

	
sounddevice.query_hostapis(index=None)[source]

	Return information about available host APIs.

	Parameters:	index (int, optional) –
If specified, information about only the given host API index
is returned in a single dictionary.

	Returns:	dict or tuple of dict –
A dictionary with information about the given host API index
or – if no index was specified – a tuple containing one
dictionary for each available host API.
The dictionaries have the following keys:
	'name'

	The name of the host API.

	'devices'

	A list of device IDs belonging to the host API.
Use query_devices() to get information about a device.

	'default_input_device', 'default_output_device'

	The device ID of the default input/output device of the host
API. If no default input/output device exists for the given
host API, this is -1.
Note

The overall default device(s) – which can be
overwritten by assigning to default.device –
take(s) precedence over default.hostapi and the
information in the abovementioned dictionaries.

See also

query_devices()

	
sounddevice.check_input_settings(device=None, channels=None, dtype=None, samplerate=None)[source]

	Check if given input device settings are supported.

All parameters are optional, default settings are used for
any unspecified parameters. If the settings are supported, the
function does nothing; if not, an exception is raised.

	Parameters:	
	device (int or str, optional) –
Device ID or device name substring, see default.device.

	channels (int, optional) –
Number of input channels, see default.channels.

	dtype (str or numpy.dtype, optional) –
Data type for input samples, see default.dtype.

	samplerate (float, optional) –
Sampling frequency, see default.samplerate.

	
sounddevice.check_output_settings(device=None, channels=None, dtype=None, samplerate=None)[source]

	Check if given output device settings are supported.

Same as check_input_settings(), just for output device
settings.

	
sounddevice.sleep(msec)[source]

	Put the caller to sleep for at least msec milliseconds.

The function may sleep longer than requested so don’t rely on this
for accurate musical timing.

	
sounddevice.get_portaudio_version()[source]

	Get version information for the PortAudio library.

Returns the release number and a textual description of the current
PortAudio build, e.g.

(1899, 'PortAudio V19-devel (built Feb 15 2014 23:28:00)')

	
class sounddevice.default[source]

	Get/set defaults for the sounddevice module.

The attributes device, channels, dtype and
latency accept single values which specify the given
property for both input and output.
However, if the property differs between input and output, pairs of
values can be used, where the first value specifies the input and
the second value specifies the output.
All other attributes are always single values.

Examples

>>> import sounddevice as sd
>>> sd.default.samplerate = 48000
>>> sd.default.dtype
['float32', 'float32']

Different values for input and output:

>>> sd.default.channels = 1, 2

A single value sets both input and output at the same time:

>>> sd.default.device = 5
>>> sd.default.device
[5, 5]

An attribute can be set to the “factory default” by assigning
None:

>>> sd.default.samplerate = None
>>> sd.default.device = None, 4

Use reset() to reset all attributes:

>>> sd.default.reset()

	
device = (None, None)

	Index or query string of default input/output device.

If not overwritten, this is queried from PortAudio.

If a string is given, the device is selected which contains all
space-separated parts in the right order. Each device string
contains the name of the corresponding host API in the end.
The string comparison is case-insensitive.

See also

query_devices()

	
channels = (None, None)

	Number of input/output channels.

The maximum number of channels for a given device can be found out
with query_devices().

	
dtype = ('float32', 'float32')

	Data type used for input/output samples.

The types 'float32', 'int32', 'int16', 'int8' and
'uint8' can be used for all streams and functions.
Additionally, play(), rec() and playrec() support
'float64' (for convenience, data is merely converted from/to
'float32') and RawInputStream, RawOutputStream
and RawStream support 'int24' (packed 24 bit format –
not supported in NumPy!).

If NumPy is available, the corresponding numpy.dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]
objects can be used as well.

The floating point representations 'float32' and 'float64'
use +1.0 and -1.0 as the maximum and minimum values, respectively.
'uint8' is an unsigned 8 bit format where 128 is considered
“ground”.

	
latency = ('high', 'high')

	Suggested input/output latency in seconds.

The special values 'low' and 'high' can be used to select
the default low/high latency of the chosen device.
'high' is typically more robust (i.e. buffer under-/overflows
are less likely), but the latency may be too large for interactive
applications.

See also

query_devices()

	
samplerate = None

	Sampling frequency in Hertz (= frames per second).

See also

query_devices()

	
blocksize = 0

	See the blocksize argument of Stream.

	
clip_off = False

	Disable clipping.

Set to True to disable default clipping of out of range samples.

	
dither_off = False

	Disable dithering.

Set to True to disable default dithering.

	
never_drop_input = False

	Set behavior for input overflow of full-duplex streams.

Set to True to request that where possible a full duplex stream
will not discard overflowed input samples without calling the stream
callback. This flag is only valid for full-duplex callback streams
(i.e. only Stream and RawStream and only if
callback was specified; this includes playrec()) and only
when used in combination with blocksize=0 (the default). Using
this flag incorrectly results in an error being raised.

	
prime_output_buffers_using_stream_callback = False

	How to fill initial output buffers.

Set to True to call the stream callback to fill initial output
buffers, rather than the default behavior of priming the buffers
with zeros (silence). This flag has no effect for input-only
(InputStream and RawInputStream) and blocking
read/write streams (i.e. if callback wasn’t specified).

	
hostapi

	Index of the default host API (read-only).

	
reset()[source]

	Reset all attributes to their “factory default”.

	
class sounddevice.Stream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)[source]

	Open a stream for input and output.

To open an input-only or output-only stream use
InputStream or OutputStream, respectively.
If you want to handle audio data as buffer objects instead of
NumPy arrays, use RawStream, RawInputStream or
RawOutputStream.

A single stream can provide multiple channels of real-time
streaming audio input and output to a client application. A
stream provides access to audio hardware represented by one or
more devices. Depending on the underlying Host API, it may be
possible to open multiple streams using the same device, however
this behavior is implementation defined. Portable applications
should assume that a device may be simultaneously used by at
most one stream.

The arguments device, channels, dtype and latency can be
either single values (which will be used for both input and
output parameters) or pairs of values (where the first one is
the value for the input and the second one for the output).

All arguments are optional, the values for unspecified
parameters are taken from the default object.
If one of the values of a parameter pair is None, the
corresponding value from default will be used instead.

The created stream is inactive (see active,
stopped). It can be started with start().

Every stream object is also a
context manager [http://docs.python.org/3/reference/datamodel.html#context-managers], i.e. it can be
used in a with statement [http://docs.python.org/3/reference/compound_stmts.html#with] to automatically
call start() in the beginning of the statement and
stop() and close() on exit.

	Parameters:	
	samplerate (float, optional) –
The desired sampling frequency (for both input and output).
The default value can be changed with
default.samplerate.

	blocksize (int, optional) –
The number of frames passed to the stream callback function,
or the preferred block granularity for a blocking read/write
stream.
The special value blocksize=0 (which is the default) may
be used to request that the stream callback will receive an
optimal (and possibly varying) number of frames based on
host requirements and the requested latency settings.
The default value can be changed with
default.blocksize.

Note

With some host APIs, the use of non-zero
blocksize for a callback stream may introduce an
additional layer of buffering which could introduce
additional latency. PortAudio guarantees that the
additional latency will be kept to the theoretical
minimum however, it is strongly recommended that a
non-zero blocksize value only be used when your
algorithm requires a fixed number of frames per stream
callback.

	device (int or str or pair thereof, optional) –
Device index(es) or query string(s) specifying the device(s)
to be used. The default value(s) can be changed with
default.device.

	channels (int or pair of int, optional) –
The number of channels of sound to be delivered to the
stream callback or accessed by read() or
write(). It can range from 1 to the value of
'max_input_channels'/'max_output_channels' in the
dict returned by query_devices().
By default, the maximum possible number of channels for the
selected device is used (which may not be what you want; see
query_devices()). The default value(s) can be changed
with default.channels.

	dtype (str or numpy.dtype or pair thereof, optional) –
The sample format of the numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] provided to
the stream callback, read() or write().
It may be any of float32, int32, int16, int8,
uint8. See numpy.dtype [http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype].
The float64 data type is not supported, this is only
supported for convenience in
play()/rec()/playrec().
The packed 24 bit format 'int24' is only supported in
the “raw” stream classes, see RawStream. The
default value(s) can be changed with default.dtype.

	latency (float or {‘low’, ‘high’} or pair thereof, optional) –
The desired latency in seconds. The special values
'low' and 'high' (latter being the default) select
the default low and high latency, respectively (see
query_devices()). The default value(s) can be changed
with default.latency.
Where practical, implementations should configure their
latency based on this parameter, otherwise they may choose
the closest viable latency instead. Unless the suggested
latency is greater than the absolute upper limit for the
device, implementations should round the latency up to the
next practical value – i.e. to provide an equal or higher
latency wherever possible. Actual latency values for an
open stream may be retrieved using the latency
attribute.

	callback (callable, optional) –
User-supplied function to consume, process or generate audio
data in response to requests from an active stream.
When a stream is running, PortAudio calls the stream
callback periodically. The callback function is responsible
for processing and filling input and output buffers,
respectively.

If no callback is given, the stream will be opened in
“blocking read/write” mode. In blocking mode, the client
can receive sample data using read() and write sample
data using write(), the number of frames that may be
read or written without blocking is returned by
read_available and write_available,
respectively.

The callback must have this signature:

callback(indata: ndarray, outdata: ndarray, frames: int,
 time: CData, status: CallbackFlags) -> None

The first and second argument are the input and output
buffer, respectively, as two-dimensional
numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] with one column per channel (i.e.
with a shape of (frames, channels)) and with a data type
specified by dtype.
The output buffer contains uninitialized data and the
callback is supposed to fill it with proper audio data.
If no data is available, the buffer should be filled with
zeros (e.g. by using outdata.fill(0)).

Note

In Python, assigning to an identifier merely
re-binds the identifier to another object, so this will
not work as expected:

outdata = my_data # Don't do this!

To actually assign data to the buffer itself, you can use
indexing, e.g.:

outdata[:] = my_data

... which fills the whole buffer, or:

outdata[:, 1] = my_channel_data

... which only fills one channel.

The third argument holds the number of frames to be
processed by the stream callback. This is the same as the
length of the input and output buffers.

The forth argument provides a CFFI structure with
timestamps indicating the ADC capture time of the first
sample in the input buffer (time.inputBufferAdcTime), the
DAC output time of the first sample in the output buffer
(time.outputBufferDacTime) and the time the callback was
invoked (time.currentTime).
These time values are expressed in seconds and are
synchronised with the time base used by time for the
associated stream.

The fifth argument is a CallbackFlags instance
indicating whether input and/or output buffers have been
inserted or will be dropped to overcome underflow or
overflow conditions.

If an exception is raised in the callback, it will not be
called again.
If CallbackAbort is raised, the stream will finish
as soon as possible. If CallbackStop is raised,
the stream will continue until all buffers generated by the
callback have been played. This may be useful in
applications such as soundfile players where a specific
duration of output is required.
If another exception is raised, its traceback is printed to
sys.stderr [http://docs.python.org/3/library/sys.html#sys.stderr].
Exceptions are not propagated to the main thread, i.e. the
main Python program keeps running as if nothing had
happened.

Note

The callback must always fill the entire output
buffer, no matter if or which exceptions are raised.

If no exception is raised in the callback, it
automatically continues to be called until stop(),
abort() or close() are used to stop the stream.

The PortAudio stream callback runs at very high or real-time
priority. It is required to consistently meet its time
deadlines. Do not allocate memory, access the file system,
call library functions or call other functions from the
stream callback that may block or take an unpredictable
amount of time to complete. With the exception of
cpu_load it is not permissible to call PortAudio API
functions from within the stream callback.

In order for a stream to maintain glitch-free operation the
callback must consume and return audio data faster than it
is recorded and/or played. PortAudio anticipates that each
callback invocation may execute for a duration approaching
the duration of frames audio frames at the stream’s
sampling frequency. It is reasonable to expect to be able
to utilise 70% or more of the available CPU time in the
PortAudio callback. However, due to buffer size adaption
and other factors, not all host APIs are able to guarantee
audio stability under heavy CPU load with arbitrary fixed
callback buffer sizes. When high callback CPU utilisation
is required the most robust behavior can be achieved by
using blocksize=0.

	finished_callback (callable, optional) –
User-supplied function which will be called when the stream
becomes inactive (i.e. once a call to stop() will not
block).

A stream will become inactive after the stream callback
raises an exception or when stop() or abort()
is called. For a stream providing audio output, if the
stream callback raises CallbackStop, or
stop() is called, the stream finished callback will
not be called until all generated sample data has been
played. The callback must have this signature:

finished_callback() -> None

	clip_off (bool, optional) –
See default.clip_off.

	dither_off (bool, optional) –
See default.dither_off.

	never_drop_input (bool, optional) –
See default.never_drop_input.

	prime_output_buffers_using_stream_callback (bool, optional) –
See default.prime_output_buffers_using_stream_callback.

	
abort()

	Terminate audio processing immediately.

This does not wait for pending buffers to complete.

See also

start(), stop()

	
active

	True when the stream is active, False otherwise.

A stream is active after a successful call to start(),
until it becomes inactive either as a result of a call to
stop() or abort(), or as a result of an exception
raised in the stream callback.
In the latter case, the stream is considered inactive after the
last buffer has finished playing.

See also

stopped

	
blocksize

	Number of frames per block.

The special value 0 means that the blocksize can change between
blocks. See the blocksize argument of Stream.

	
channels

	The number of input/output channels.

	
close(ignore_errors=True)

	Close the stream.

If the audio stream is active any pending buffers are discarded
as if abort() had been called.

	
cpu_load

	CPU usage information for the stream.

The “CPU Load” is a fraction of total CPU time consumed by a
callback stream’s audio processing routines including, but not
limited to the client supplied stream callback. This function
does not work with blocking read/write streams.

This may be used in the stream callback function or in the
application.
It provides a floating point value, typically between 0.0 and
1.0, where 1.0 indicates that the stream callback is consuming
the maximum number of CPU cycles possible to maintain real-time
operation. A value of 0.5 would imply that PortAudio and the
stream callback was consuming roughly 50% of the available CPU
time. The value may exceed 1.0. A value of 0.0 will always be
returned for a blocking read/write stream, or if an error
occurs.

	
device

	IDs of the input/output device.

	
dtype

	Data type of the audio samples.

See also

default.dtype, samplesize

	
latency

	The input/output latency of the stream in seconds.

This value provides the most accurate estimate of input/output
latency available to the implementation.
It may differ significantly from the latency value(s) passed
to Stream().

	
read(frames)

	Read samples from the stream into a NumPy array.

The function doesn’t return until all requested frames have
been read – this may involve waiting for the operating system
to supply the data (except if no more than
read_available frames were requested).

This is the same as RawStream.read(), except that it
returns a NumPy array instead of a plain Python buffer object.

	Parameters:	frames (int) –
The number of frames to be read. This parameter is not
constrained to a specific range, however high performance
applications will want to match this parameter to the
blocksize parameter used when opening the stream.

	Returns:	
	data (numpy.ndarray) –
A two-dimensional numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] with one column per
channel (i.e. with a shape of (frames, channels)) and
with a data type specified by dtype.

	overflowed (bool) –
True if input data was discarded by PortAudio after the
previous call and before this call.

	
read_available

	The number of frames that can be read without waiting.

Returns a value representing the maximum number of frames that
can be read from the stream without blocking or busy waiting.

	
samplerate

	The sampling frequency in Hertz (= frames per second).

In cases where the hardware sampling frequency is inaccurate and
PortAudio is aware of it, the value of this field may be
different from the samplerate parameter passed to
Stream. If information about the actual hardware
sampling frequency is not available, this field will have the
same value as the samplerate parameter passed to
Stream.

	
samplesize

	The size in bytes of a single sample.

See also

dtype

	
start()

	Commence audio processing.

See also

stop(), abort()

	
stop()

	Terminate audio processing.

This waits until all pending audio buffers have been played
before it returns.

See also

start(), abort()

	
stopped

	True when the stream is stopped, False otherwise.

A stream is considered to be stopped prior to a successful call
to start() and after a successful call to stop() or
abort(). If a stream callback is cancelled (by raising an
exception) the stream is not considered to be stopped.

See also

active

	
time

	The current stream time in seconds.

This is according to the same clock used to generate the
timestamps passed with the time argument to the stream
callback (see the callback argument of Stream).
The time values are monotonically increasing and have
unspecified origin.

This provides valid time values for the entire life of the
stream, from when the stream is opened until it is closed.
Starting and stopping the stream does not affect the passage of
time as provided here.

This time may be used for synchronizing other events to the
audio stream, for example synchronizing audio to MIDI.

	
write(data)

	Write samples to the stream.

This function doesn’t return until the entire buffer has been
consumed – this may involve waiting for the operating system to
consume the data (except if data contains no more than
write_available frames).

This is the same as RawStream.write(), except that it
expects a NumPy array instead of a plain Python buffer object.

	Parameters:	data (array_like) –
A two-dimensional array-like object with one column per
channel (i.e. with a shape of (frames, channels)) and
with a data type specified by dtype.
A one-dimensional array can be used for mono data.
The array layout must be C-contiguous (see
numpy.ascontiguousarray() [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray]).

The length of the buffer is not constrained to a specific
range, however high performance applications will want to
match this parameter to the blocksize parameter used when
opening the stream.

	Returns:	underflowed (bool) –
True if additional output data was inserted after the
previous call and before this call.

	
write_available

	The number of frames that can be written without waiting.

Returns a value representing the maximum number of frames that
can be written to the stream without blocking or busy waiting.

	
class sounddevice.InputStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)[source]

	Open an input stream.

This has the same methods and attributes as Stream,
except write() and
write_available. Furthermore, the stream
callback is expected to have a different signature (see below).

	Parameters:	callback (callable) –
User-supplied function to consume audio in response to
requests from an active stream.
The callback must have this signature:

callback(indata: numpy.ndarray, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
Stream, except that outdata is missing.

See also

Stream, RawInputStream

	
class sounddevice.OutputStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)[source]

	Open an output stream.

This has the same methods and attributes as Stream,
except read() and read_available.
Furthermore, the stream callback is expected to have a different
signature (see below).

	Parameters:	callback (callable) –
User-supplied function to generate audio data in response to
requests from an active stream.
The callback must have this signature:

callback(outdata: numpy.ndarray, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
Stream, except that indata is missing.

See also

Stream, RawOutputStream

	
class sounddevice.RawStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)[source]

	Open a “raw” input/output stream.

This is the same as Stream, except that the callback
function and read()/write() work on plain Python
buffer objects instead of on NumPy arrays.
NumPy is not necessary to use this.

To open “raw” input-only or output-only stream use
RawInputStream or RawOutputStream,
respectively.
If you want to handle audio data as NumPy arrays instead of
buffer objects, use Stream, InputStream or
OutputStream.

	Parameters:	
	dtype (str or pair of str) –
The sample format of the buffers provided to the stream
callback, read() or write().
In addition to the formats supported by Stream
('float32', 'int32', 'int16', 'int8',
'uint8'), this also supports 'int24', i.e.
packed 24 bit format.
The default value can be changed with default.dtype.
See also Stream.samplesize.

	callback (callable) –
User-supplied function to consume, process or generate audio
data in response to requests from an active stream.
The callback must have this signature:

callback(indata: buffer, outdata: buffer, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
Stream, except that indata and outdata are
plain Python buffer objects instead of NumPy arrays.

See also

RawInputStream, RawOutputStream, Stream

	
read(frames)

	Read samples from the stream into a buffer.

This is the same as Stream.read(), except that it returns
a plain Python buffer object instead of a NumPy array.
NumPy is not necessary to use this.

	Parameters:	frames (int) –
The number of frames to be read. See Stream.read().

	Returns:	
	data (buffer) –
A buffer of interleaved samples. The buffer contains
samples in the format specified by the dtype parameter
used to open the stream, and the number of channels
specified by channels.
See also Stream.samplesize.

	overflowed (bool) –
See Stream.read().

	
write(data)

	Write samples to the stream.

This is the same as Stream.write(), except that it expects
a plain Python buffer object instead of a NumPy array.
NumPy is not necessary to use this.

	Parameters:	data (buffer or bytes or iterable of int) –
A buffer of interleaved samples. The buffer contains
samples in the format specified by the dtype argument used
to open the stream, and the number of channels specified by
channels. The length of the buffer is not constrained to
a specific range, however high performance applications will
want to match this parameter to the blocksize parameter
used when opening the stream.
See also Stream.samplesize.

	Returns:	underflowed (bool) –
See Stream.write().

	
class sounddevice.RawInputStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)[source]

	Open a “raw” input stream.

This is the same as InputStream, except that the
callback function and read() work on plain
Python buffer objects instead of on NumPy arrays.
NumPy is not necessary to use this.

	Parameters:	
	dtype (str) –
See RawStream.

	callback (callable) –
User-supplied function to consume audio data in response to
requests from an active stream.
The callback must have this signature:

callback(indata: buffer, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
RawStream, except that outdata is missing.

See also

RawStream, Stream

	
class sounddevice.RawOutputStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)[source]

	Open a “raw” output stream.

This is the same as OutputStream, except that the
callback function and write() work on plain
Python buffer objects instead of on NumPy arrays.
NumPy is not necessary to use this.

	Parameters:	
	dtype (str) –
See RawStream.

	callback (callable) –
User-supplied function to generate audio data in response to
requests from an active stream.
The callback must have this signature:

callback(outdata: buffer, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
RawStream, except that indata is missing.

See also

RawStream, Stream

	
class sounddevice.DeviceList[source]

	A list with information about all available audio devices.

This class is not meant to be instantiated by the user.
Instead, it is returned by query_devices().
It contains a dictionary for each available device, holding the keys
described in query_devices().

This class has a special string representation that is shown as
return value of query_devices() if used in an interactive
Python session. It will also be shown when using the print() [http://docs.python.org/3/library/functions.html#print]
function. Furthermore, it can be obtained with repr() [http://docs.python.org/3/library/functions.html#repr] and
str() [http://docs.python.org/3/library/stdtypes.html#str].

	
class sounddevice.CallbackFlags(flags=0)[source]

	Flag bits for the status argument to a stream callback.

See also

Stream

Examples

This can be used to collect the errors of multiple status objects:

>>> import sounddevice as sd
>>> errors = sd.CallbackFlags()
>>> errors |= status1
>>> errors |= status2
>>> errors |= status3
>>> # and so on ...
>>> errors.input_overflow
True

	
input_underflow

	Input underflow.

In a stream opened with blocksize=0, indicates that input data
is all silence (zeros) because no real data is available. In a
stream opened with a non-zero blocksize, it indicates that one
or more zero samples have been inserted into the input buffer to
compensate for an input underflow.

	
input_overflow

	Input overflow.

In a stream opened with blocksize=0, indicates that data prior
to the first sample of the input buffer was discarded due to an
overflow, possibly because the stream callback is using too much
CPU time. Otherwise indicates that data prior to one or more
samples in the input buffer was discarded.

	
output_underflow

	Output underflow.

Indicates that output data (or a gap) was inserted, possibly
because the stream callback is using too much CPU time.

	
output_overflow

	Output overflow.

Indicates that output data will be discarded because no room is
available.

	
priming_output

	Priming output.

Some of all of the output data will be used to prime the stream,
input data may be zero.

	
class sounddevice.CallbackStop[source]

	Exception to be raised by the user to stop callback processing.

If this is raised in the stream callback, the callback will not be
invoked anymore (but all pending audio buffers will be played).

See also

CallbackAbort, Stream.stop(), Stream

	
class sounddevice.CallbackAbort[source]

	Exception to be raised by the user to abort callback processing.

If this is raised in the stream callback, all pending buffers are
discarded and the callback will not be invoked anymore.

See also

CallbackStop, Stream.abort(), Stream

	
class sounddevice.PortAudioError[source]

	This exception will be raised on PortAudio errors.

Index

Index

Version History

	Version 0.3.3 (2016-04-11):

	
	Add loop argument to sounddevice.play()

	Version 0.3.2 (2016-03-16):

	
	mapping=[1] works now on all host APIs

	Example application plot_input.py showing the live microphone signal(s)

	Device substrings are now allowed in sounddevice.query_devices()

	Version 0.3.1 (2016-01-04):

	
	Add sounddevice.check_input_settings() and
sounddevice.check_output_settings()

	Send PortAudio output to /dev/null (on Linux and OSX)

	Version 0.3.0 (2015-10-28):

	
	Remove sounddevice.print_devices(), sounddevice.query_devices() can be
used instead, since it now returns a sounddevice.DeviceList object.

	Version 0.2.2 (2015-10-21):

	
	Devices can now be selected by substrings of device name and host API name

	Version 0.2.1 (2015-10-08):

	
	Example applications wire.py (based on PortAudio’s patest_wire.c)
and spectrogram.py (based on code by Mauris Van Hauwe)

	Version 0.2.0 (2015-07-03):

	
	Support for wheels including a dylib for Mac OS X and DLLs for Windows.
The code for creating the wheels is largely taken from PySoundFile [https://github.com/bastibe/PySoundFile/].

	Remove logging (this seemed too intrusive)

	Return callback status from sounddevice.wait() and add the new function
sounddevice.get_status()

	sounddevice.playrec(): Rename the arguments input_channels and
input_dtype to channels and dtype, respectively

	Version 0.1.0 (2015-06-20):

	Initial release. Some ideas are taken from PySoundCard [https://github.com/bastibe/PySoundCard/]. Thanks to Bastian
Bechtold for many fruitful discussions during the development of several
features which python-sounddevice inherited from there.

 Copyright 2016, Matthias Geier.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	python-sounddevice, version 0.3.3

Index

 A
 | B
 | C
 | D
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	

 	abort() (sounddevice.Stream method)

 	

 	active (sounddevice.Stream attribute)

B

 	

 	blocksize (sounddevice.default attribute)

 	

 	(sounddevice.Stream attribute)

C

 	

 	CallbackAbort (class in sounddevice)

 	CallbackFlags (class in sounddevice)

 	CallbackStop (class in sounddevice)

 	channels (sounddevice.default attribute)

 	

 	(sounddevice.Stream attribute)

 	check_input_settings() (in module sounddevice)

 	

 	check_output_settings() (in module sounddevice)

 	clip_off (sounddevice.default attribute)

 	close() (sounddevice.Stream method)

 	cpu_load (sounddevice.Stream attribute)

D

 	

 	default (class in sounddevice)

 	device (sounddevice.default attribute)

 	

 	(sounddevice.Stream attribute)

 	DeviceList (class in sounddevice)

 	

 	dither_off (sounddevice.default attribute)

 	dtype (sounddevice.default attribute)

 	

 	(sounddevice.Stream attribute)

G

 	

 	get_portaudio_version() (in module sounddevice)

 	

 	get_status() (in module sounddevice)

H

 	

 	hostapi (sounddevice.default attribute)

I

 	

 	input_overflow (sounddevice.CallbackFlags attribute)

 	input_underflow (sounddevice.CallbackFlags attribute)

 	

 	InputStream (class in sounddevice)

L

 	

 	latency (sounddevice.default attribute)

 	

 	(sounddevice.Stream attribute)

N

 	

 	never_drop_input (sounddevice.default attribute)

O

 	

 	output_overflow (sounddevice.CallbackFlags attribute)

 	output_underflow (sounddevice.CallbackFlags attribute)

 	

 	OutputStream (class in sounddevice)

P

 	

 	play() (in module sounddevice)

 	playrec() (in module sounddevice)

 	PortAudioError (class in sounddevice)

 	

 	prime_output_buffers_using_stream_callback (sounddevice.default attribute)

 	priming_output (sounddevice.CallbackFlags attribute)

Q

 	

 	query_devices() (in module sounddevice)

 	

 	query_hostapis() (in module sounddevice)

R

 	

 	RawInputStream (class in sounddevice)

 	RawOutputStream (class in sounddevice)

 	RawStream (class in sounddevice)

 	read() (sounddevice.RawStream method)

 	

 	(sounddevice.Stream method)

 	

 	read_available (sounddevice.Stream attribute)

 	rec() (in module sounddevice)

 	reset() (sounddevice.default method)

S

 	

 	samplerate (sounddevice.default attribute)

 	

 	(sounddevice.Stream attribute)

 	samplesize (sounddevice.Stream attribute)

 	sleep() (in module sounddevice)

 	sounddevice (module)

 	

 	start() (sounddevice.Stream method)

 	stop() (in module sounddevice)

 	

 	(sounddevice.Stream method)

 	stopped (sounddevice.Stream attribute)

 	Stream (class in sounddevice)

T

 	

 	time (sounddevice.Stream attribute)

W

 	

 	wait() (in module sounddevice)

 	write() (sounddevice.RawStream method)

 	

 	(sounddevice.Stream method)

 	

 	write_available (sounddevice.Stream attribute)

 Copyright 2016, Matthias Geier.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		python-sounddevice, version 0.3.3 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Matthias Geier.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

examples.html

 Navigation

 		
 index

 		python-sounddevice, version 0.3.3 »

Example Programs

Play a Sound File

play_file.py

#!/usr/bin/env python3
"""Load an audio file and play its contents.

PySoundFile (https://github.com/bastibe/PySoundFile/) has to be installed!

"""
import argparse
import logging

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("filename", help="audio file to be played back")
parser.add_argument("-d", "--device", type=int, help="device ID")
args = parser.parse_args()

try:
 import sounddevice as sd
 import soundfile as sf
 data, fs = sf.read(args.filename, dtype='float32')
 sd.play(data, fs, device=args.device, blocking=True)
 status = sd.get_status()
 if status:
 logging.warning(str(status))
except KeyboardInterrupt:
 parser.exit('\nInterrupted by user')
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Input to Output Pass-Through

wire.py

#!/usr/bin/env python3
"""Pass input directly to output.

See https://www.assembla.com/spaces/portaudio/subversion/source/HEAD/portaudio/trunk/test/patest_wire.c

"""
import argparse
import logging

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("-i", "--input-device", type=int, help="input device ID")
parser.add_argument("-o", "--output-device", type=int, help="output device ID")
parser.add_argument("-c", "--channels", type=int, default=2,
 help="number of channels")
parser.add_argument("-t", "--dtype", help="audio data type")
parser.add_argument("-s", "--samplerate", type=float, help="sampling rate")
parser.add_argument("-b", "--blocksize", type=int, help="block size")
parser.add_argument("-l", "--latency", type=float, help="latency in seconds")
args = parser.parse_args()

try:
 import sounddevice as sd

 cumulated_status = sd.CallbackFlags()

 def callback(indata, outdata, frames, time, status):
 global cumulated_status
 cumulated_status |= status
 outdata[:] = indata

 with sd.Stream(device=(args.input_device, args.output_device),
 samplerate=args.samplerate, blocksize=args.blocksize,
 dtype=args.dtype, latency=args.latency,
 channels=args.channels, callback=callback):
 print("#" * 80)
 print("press Return to quit")
 print("#" * 80)
 input()

 if cumulated_status:
 logging.warning(str(cumulated_status))
except KeyboardInterrupt:
 parser.exit('\nInterrupted by user')
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Plot Microphone Signal(s) in Real-Time

plot_input.py

#!/usr/bin/env python3
"""Plot the live microphone signal(s) with matplotlib."""
import argparse
from queue import Queue, Empty

def int_or_str(text):
 """Helper function for argument parsing."""
 try:
 return int(text)
 except ValueError:
 return text

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
 '-l', '--list-devices', action='store_true',
 help='show list of audio devices and exit')
parser.add_argument(
 '-d', '--device', type=int_or_str,
 help='input device (numeric ID or substring)')
parser.add_argument(
 '-w', '--window', type=float, default=200, metavar='DURATION',
 help='visible time slot (default: %(default)s ms)')
parser.add_argument(
 '-i', '--interval', type=float, default=30,
 help='minimum time between plot updates (default: %(default)s ms)')
parser.add_argument(
 '-b', '--blocksize', type=int, help='block size (in samples)')
parser.add_argument(
 '-r', '--samplerate', type=float, help='sampling rate of audio device')
parser.add_argument(
 '-n', '--downsample', type=int, default=10, metavar='N',
 help='display every Nth sample (default: %(default)s)')
parser.add_argument(
 'channels', type=int, default=[1], nargs='*', metavar='CHANNEL',
 help='input channels to plot (default: the first)')
args = parser.parse_args()
if any(c < 1 for c in args.channels):
 parser.error('argument CHANNEL: must be >= 1')
mapping = [c - 1 for c in args.channels] # Channel numbers start with 1
queue = Queue()

def audio_callback(indata, frames, time, status):
 """This is called (from a separate thread) for each audio block."""
 if status:
 print(status, flush=True)
 # Fancy indexing with mapping creates a (necessary!) copy:
 queue.put(indata[::args.downsample, mapping])

def update_plot(frame):
 """This is called by matplotlib for each plot update.

 Typically, audio callbacks happen more frequently than plot updates,
 therefore the queue tends to contain multiple blocks of audio data.

 """
 global plotdata
 block = True # The first read from the queue is blocking ...
 while True:
 try:
 data = queue.get(block=block)
 except Empty:
 break
 shift = len(data)
 plotdata = np.roll(plotdata, -shift, axis=0)
 plotdata[-shift:, :] = data
 block = False # ... all further reads are non-blocking
 for column, line in enumerate(lines):
 line.set_ydata(plotdata[:, column])
 return lines

try:
 from matplotlib.animation import FuncAnimation
 import matplotlib.pyplot as plt
 import numpy as np
 import sounddevice as sd

 if args.list_devices:
 print(sd.query_devices())
 parser.exit()
 if args.samplerate is None:
 device_info = sd.query_devices(args.device, 'input')
 args.samplerate = device_info['default_samplerate']

 length = np.ceil(args.window * args.samplerate / (1000 * args.downsample))
 plotdata = np.zeros((length, len(args.channels)))

 fig, ax = plt.subplots()
 lines = ax.plot(plotdata)
 if len(args.channels) > 1:
 ax.legend(['channel {}'.format(c) for c in args.channels],
 loc='lower left', ncol=len(args.channels))
 ax.axis((0, len(plotdata), -1, 1))
 ax.set_yticks([0])
 ax.yaxis.grid(True)
 ax.tick_params(bottom='off', top='off', labelbottom='off',
 right='off', left='off', labelleft='off')
 fig.tight_layout(pad=0)

 stream = sd.InputStream(
 device=args.device, channels=max(args.channels),
 samplerate=args.samplerate, callback=audio_callback)
 ani = FuncAnimation(fig, update_plot, interval=args.interval, blit=True)
 with stream:
 plt.show()
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Real-Time Text-Mode Spectrogram

spectrogram.py

#!/usr/bin/env python3
"""Show a text-mode spectrogram using live microphone data."""
import argparse
import logging
import numpy as np
import shutil

usage_line = ' press <enter> to quit, +<enter> or -<enter> to change scaling '

try:
 columns, _ = shutil.get_terminal_size()
except AttributeError:
 columns = 80

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('-l', '--list-devices', action='store_true',
 help='list audio devices and exit')
parser.add_argument('-b', '--block-duration', type=float,
 metavar='DURATION', default=50,
 help='block size (default %(default)s milliseconds)')
parser.add_argument('-c', '--columns', type=int, default=columns,
 help='width of spectrogram')
parser.add_argument('-d', '--device', type=int, help='input device ID')
parser.add_argument('-g', '--gain', type=float, default=10,
 help='initial gain factor (default %(default)s)')
parser.add_argument('-r', '--range', type=float, nargs=2,
 metavar=('LOW', 'HIGH'), default=[100, 2000],
 help='frequency range (default %(default)s Hz)')
args = parser.parse_args()

low, high = args.range
if high <= low:
 parser.error("HIGH must be greater than LOW")

Create a nice output gradient using ANSI escape sequences.
Stolen from https://gist.github.com/maurisvh/df919538bcef391bc89f
colors = 30, 34, 35, 91, 93, 97
chars = ' :%#\t#%:'
gradient = []
for bg, fg in zip(colors, colors[1:]):
 for char in chars:
 if char == '\t':
 bg, fg = fg, bg
 else:
 gradient.append('\x1b[{};{}m{}'.format(fg, bg + 10, char))

try:
 import sounddevice as sd

 if args.list_devices:
 print(sd.query_devices())
 parser.exit()

 samplerate = sd.query_devices(args.device, 'input')['default_samplerate']

 delta_f = (high - low) / (args.columns - 1)
 fftsize = np.ceil(samplerate / delta_f).astype(int)
 low_bin = np.floor(low / delta_f)

 cumulated_status = sd.CallbackFlags()

 def callback(indata, frames, time, status):
 global cumulated_status
 cumulated_status |= status
 if any(indata):
 magnitude = np.abs(np.fft.rfft(indata[:, 0], n=fftsize))
 magnitude *= args.gain / fftsize
 line = (gradient[int(np.clip(x, 0, 1) * (len(gradient) - 1))]
 for x in magnitude[low_bin:low_bin + args.columns])
 print(*line, sep='', end='\x1b[0m\n', flush=True)
 else:
 print('no input', flush=True)

 with sd.InputStream(device=args.device, channels=1, callback=callback,
 blocksize=int(samplerate * args.block_duration / 1000),
 samplerate=samplerate):
 while True:
 response = input()
 if response in ('', 'q', 'Q'):
 break
 for ch in response:
 if ch == '+':
 args.gain *= 2
 elif ch == '-':
 args.gain /= 2
 else:
 print('\x1b[31;40m', usage_line.center(args.columns, '#'),
 '\x1b[0m', sep='', flush=True)
 break
 if cumulated_status:
 logging.warning(str(cumulated_status))
except KeyboardInterrupt:
 parser.exit('Interrupted by user')
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

 © Copyright 2016, Matthias Geier.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_modules/sounddevice.html

 Navigation

 		
 index

 		python-sounddevice, version 0.3.3 »

 		Module code »

 Source code for sounddevice

Copyright (c) 2015-2016 Matthias Geier
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

"""Play and Record Sound with Python.

http://python-sounddevice.rtfd.org/

"""
__version__ = "0.3.3"

import atexit as _atexit
from cffi import FFI as _FFI
import os as _os
import platform as _platform
import sys as _sys

_ffi = _FFI()
_ffi.cdef("""
int Pa_GetVersion(void);
const char* Pa_GetVersionText(void);
typedef int PaError;
typedef enum PaErrorCode
{
 paNoError = 0,
 paNotInitialized = -10000,
 paUnanticipatedHostError,
 paInvalidChannelCount,
 paInvalidSampleRate,
 paInvalidDevice,
 paInvalidFlag,
 paSampleFormatNotSupported,
 paBadIODeviceCombination,
 paInsufficientMemory,
 paBufferTooBig,
 paBufferTooSmall,
 paNullCallback,
 paBadStreamPtr,
 paTimedOut,
 paInternalError,
 paDeviceUnavailable,
 paIncompatibleHostApiSpecificStreamInfo,
 paStreamIsStopped,
 paStreamIsNotStopped,
 paInputOverflowed,
 paOutputUnderflowed,
 paHostApiNotFound,
 paInvalidHostApi,
 paCanNotReadFromACallbackStream,
 paCanNotWriteToACallbackStream,
 paCanNotReadFromAnOutputOnlyStream,
 paCanNotWriteToAnInputOnlyStream,
 paIncompatibleStreamHostApi,
 paBadBufferPtr
} PaErrorCode;
const char *Pa_GetErrorText(PaError errorCode);
PaError Pa_Initialize(void);
PaError Pa_Terminate(void);
typedef int PaDeviceIndex;
/* not implemented: paNoDevice */
/* not implemented: paUseHostApiSpecificDeviceSpecification */
typedef int PaHostApiIndex;
PaHostApiIndex Pa_GetHostApiCount(void);
PaHostApiIndex Pa_GetDefaultHostApi(void);
typedef enum PaHostApiTypeId
{
 paInDevelopment=0,
 paDirectSound=1,
 paMME=2,
 paASIO=3,
 paSoundManager=4,
 paCoreAudio=5,
 paOSS=7,
 paALSA=8,
 paAL=9,
 paBeOS=10,
 paWDMKS=11,
 paJACK=12,
 paWASAPI=13,
 paAudioScienceHPI=14
} PaHostApiTypeId;
typedef struct PaHostApiInfo
{
 int structVersion;
 PaHostApiTypeId type;
 const char *name;
 int deviceCount;
 PaDeviceIndex defaultInputDevice;
 PaDeviceIndex defaultOutputDevice;
} PaHostApiInfo;
const PaHostApiInfo * Pa_GetHostApiInfo(PaHostApiIndex hostApi);
PaHostApiIndex Pa_HostApiTypeIdToHostApiIndex(PaHostApiTypeId type);
PaDeviceIndex Pa_HostApiDeviceIndexToDeviceIndex(PaHostApiIndex hostApi,
 int hostApiDeviceIndex);
typedef struct PaHostErrorInfo{
 PaHostApiTypeId hostApiType;
 long errorCode;
 const char *errorText;
}PaHostErrorInfo;
const PaHostErrorInfo* Pa_GetLastHostErrorInfo(void);
PaDeviceIndex Pa_GetDeviceCount(void);
PaDeviceIndex Pa_GetDefaultInputDevice(void);
PaDeviceIndex Pa_GetDefaultOutputDevice(void);
typedef double PaTime;
typedef unsigned long PaSampleFormat;
#define paFloat32 0x00000001
#define paInt32 0x00000002
#define paInt24 0x00000004
#define paInt16 0x00000008
#define paInt8 0x00000010
#define paUInt8 0x00000020
#define paCustomFormat 0x00010000
#define paNonInterleaved 0x80000000
typedef struct PaDeviceInfo
{
 int structVersion;
 const char *name;
 PaHostApiIndex hostApi;
 int maxInputChannels;
 int maxOutputChannels;
 PaTime defaultLowInputLatency;
 PaTime defaultLowOutputLatency;
 PaTime defaultHighInputLatency;
 PaTime defaultHighOutputLatency;
 double defaultSampleRate;
} PaDeviceInfo;
const PaDeviceInfo* Pa_GetDeviceInfo(PaDeviceIndex device);
typedef struct PaStreamParameters
{
 PaDeviceIndex device;
 int channelCount;
 PaSampleFormat sampleFormat;
 PaTime suggestedLatency;
 void *hostApiSpecificStreamInfo;
} PaStreamParameters;
/* not implemented: paFormatIsSupported */
PaError Pa_IsFormatSupported(const PaStreamParameters *inputParameters,
 const PaStreamParameters *outputParameters,
 double sampleRate);
typedef void PaStream;
#define paFramesPerBufferUnspecified 0
typedef unsigned long PaStreamFlags;
#define paNoFlag 0
#define paClipOff 0x00000001
#define paDitherOff 0x00000002
#define paNeverDropInput 0x00000004
#define paPrimeOutputBuffersUsingStreamCallback 0x00000008
#define paPlatformSpecificFlags 0xFFFF0000
typedef struct PaStreamCallbackTimeInfo{
 PaTime inputBufferAdcTime;
 PaTime currentTime;
 PaTime outputBufferDacTime;
} PaStreamCallbackTimeInfo;
typedef unsigned long PaStreamCallbackFlags;
#define paInputUnderflow 0x00000001
#define paInputOverflow 0x00000002
#define paOutputUnderflow 0x00000004
#define paOutputOverflow 0x00000008
#define paPrimingOutput 0x00000010
typedef enum PaStreamCallbackResult
{
 paContinue=0,
 paComplete=1,
 paAbort=2
} PaStreamCallbackResult;
typedef int PaStreamCallback(
 const void *input, void *output,
 unsigned long frameCount,
 const PaStreamCallbackTimeInfo* timeInfo,
 PaStreamCallbackFlags statusFlags,
 void *userData);
PaError Pa_OpenStream(PaStream** stream,
 const PaStreamParameters *inputParameters,
 const PaStreamParameters *outputParameters,
 double sampleRate,
 unsigned long framesPerBuffer,
 PaStreamFlags streamFlags,
 PaStreamCallback *streamCallback,
 void *userData);
/* not implemented: Pa_OpenDefaultStream */
PaError Pa_CloseStream(PaStream *stream);
typedef void PaStreamFinishedCallback(void *userData);
PaError Pa_SetStreamFinishedCallback(PaStream *stream,
 PaStreamFinishedCallback* streamFinishedCallback);
PaError Pa_StartStream(PaStream *stream);
PaError Pa_StopStream(PaStream *stream);
PaError Pa_AbortStream(PaStream *stream);
PaError Pa_IsStreamStopped(PaStream *stream);
PaError Pa_IsStreamActive(PaStream *stream);
typedef struct PaStreamInfo
{
 int structVersion;
 PaTime inputLatency;
 PaTime outputLatency;
 double sampleRate;
} PaStreamInfo;
const PaStreamInfo* Pa_GetStreamInfo(PaStream *stream);
PaTime Pa_GetStreamTime(PaStream *stream);
double Pa_GetStreamCpuLoad(PaStream* stream);
PaError Pa_ReadStream(PaStream* stream,
 void *buffer,
 unsigned long frames);
PaError Pa_WriteStream(PaStream* stream,
 const void *buffer,
 unsigned long frames);
signed long Pa_GetStreamReadAvailable(PaStream* stream);
signed long Pa_GetStreamWriteAvailable(PaStream* stream);
/* not implemented: Pa_GetStreamHostApiType */
PaError Pa_GetSampleSize(PaSampleFormat format);
void Pa_Sleep(long msec);
""")

try:
 _lib = _ffi.dlopen('portaudio')
except OSError:
 if _platform.system() == 'Darwin':
 _libname = 'libportaudio.dylib'
 elif _platform.system() == 'Windows':
 _libname = 'libportaudio' + _platform.architecture()[0] + '.dll'
 else:
 raise
 _lib = _ffi.dlopen(_os.path.join(
 _os.path.dirname(_os.path.abspath(__file__)),
 '_sounddevice_data',
 _libname
))

_sampleformats = {
 'float32': _lib.paFloat32,
 'int32': _lib.paInt32,
 'int24': _lib.paInt24,
 'int16': _lib.paInt16,
 'int8': _lib.paInt8,
 'uint8': _lib.paUInt8,
}

_last_callback = None

[docs]def play(data, samplerate=None, mapping=None, blocking=False, loop=False,
 **kwargs):
 """Play back an array of audio data.

 Parameters

 data : array_like
 Audio data to be played back. The columns of a two-dimensional
 array are interpreted as channels, one-dimensional arrays are
 treated as mono data.
 The data types `float64`, `float32`, `int32`, `int16`, `int8`
 and `uint8` can be used.
 `float64` data is converted to `float32` before passing it to
 PortAudio, because it's not supported natively.
 mapping : array_like, optional
 List of channel numbers (starting with 1) where the columns of
 `data` shall be played back on. Must have the same length as
 number of channels in `data` (except if `data` is mono).
 Each channel may only appear once in `mapping`.
 blocking : bool, optional
 If ``False`` (the default), return immediately (but playback
 continues in the background), if ``True``, wait until playback
 is finished. A non-blocking invocation can be stopped with
 :func:`stop` or turned into a blocking one with :func:`wait`.
 loop : bool, optional
 Play `data` in a loop.

 Other Parameters

 samplerate, **kwargs
 All parameters of :class:`OutputStream` (except `channels`,
 `dtype`, `callback` and `finished_callback`) can be used.

 See Also

 rec, playrec

 """
 ctx = _CallbackContext(loop=loop)
 ctx.frames = ctx.check_data(data, mapping, kwargs.get('device'))

 def callback(outdata, frames, time, status):
 assert len(outdata) == frames
 ctx.callback_enter(status, outdata)
 ctx.write_outdata(outdata)
 ctx.callback_exit()

 ctx.start_stream(OutputStream, samplerate, ctx.output_channels,
 ctx.output_dtype, callback, blocking,
 prime_output_buffers_using_stream_callback=False,
 **kwargs)

[docs]def rec(frames=None, samplerate=None, channels=None, dtype=None,
 out=None, mapping=None, blocking=False, **kwargs):
 """Record audio data.

 Parameters

 frames : int, sometimes optional
 Number of frames to record. Not needed if `out` is given.
 channels : int, optional
 Number of channels to record. Not needed if `mapping` or `out`
 is given. The default value can be changed with
 :attr:`default.channels`.
 dtype : str or numpy.dtype, optional
 Data type of the recording. Not needed if `out` is given.
 The data types `float64`, `float32`, `int32`, `int16`, `int8`
 and `uint8` can be used. For `dtype='float64'`, audio data is
 recorded in `float32` format and converted afterwards, because
 it's not natively supported by PortAudio. The default value can
 be changed with :attr:`default.dtype`.
 mapping : array_like, optional
 List of channel numbers (starting with 1) to record.
 If `mapping` is given, `channels` is silently ignored.
 blocking : bool, optional
 If ``False`` (the default), return immediately (but recording
 continues in the background), if ``True``, wait until recording
 is finished.
 A non-blocking invocation can be stopped with :func:`stop` or
 turned into a blocking one with :func:`wait`.

 Returns

 numpy.ndarray or type(out)
 The recorded data.

 .. note:: By default (``blocking=False``), an array of data is
 returned which is still being written to while recording.
 The returned data is only valid once recording has stopped.
 Use :func:`wait` to make sure the recording is finished.

 Other Parameters

 out : numpy.ndarray or subclass, optional
 If `out` is specified, the recorded data is written into the
 given array instead of creating a new array.
 In this case, the arguments `frames`, `channels` and `dtype` are
 silently ignored!
 If `mapping` is given, its length must match the number of
 channels in `out`.
 samplerate, **kwargs
 All parameters of :class:`InputStream` (except `callback` and
 `finished_callback`) can be used.

 See Also

 play, playrec

 """
 ctx = _CallbackContext()
 ctx.frames = ctx.check_out(out, frames, channels, dtype, mapping)

 def callback(indata, frames, time, status):
 assert len(indata) == frames
 ctx.callback_enter(status, indata)
 ctx.read_indata(indata)
 ctx.callback_exit()

 ctx.start_stream(InputStream, samplerate, ctx.input_channels,
 ctx.input_dtype, callback, blocking, **kwargs)
 return ctx.out

[docs]def playrec(data, samplerate=None, channels=None, dtype=None,
 out=None, input_mapping=None, output_mapping=None, blocking=False,
 **kwargs):
 """Simultaneous playback and recording.

 Parameters

 data : array_like
 Audio data to be played back. See :func:`play`.
 channels : int, sometimes optional
 Number of input channels, see :func:`rec`.
 The number of output channels is obtained from `data.shape`.
 dtype : str or numpy.dtype, optional
 Input data type, see :func:`rec`.
 If `dtype` is not specified, it is taken from `data.dtype`
 (i.e. :attr:`default.dtype` is ignored).
 The output data type is obtained from `data.dtype` anyway.
 input_mapping, output_mapping : array_like, optional
 See the parameter `mapping` of :func:`rec` and :func:`play`,
 respectively.
 blocking : bool, optional
 If ``False`` (the default), return immediately (but continue
 playback/recording in the background), if ``True``, wait until
 playback/recording is finished.
 A non-blocking invocation can be stopped with :func:`stop` or
 turned into a blocking one with :func:`wait`.

 Returns

 numpy.ndarray or type(out)
 The recorded data. See :func:`rec`.

 Other Parameters

 out : numpy.ndarray or subclass, optional
 See :func:`rec`.
 samplerate, **kwargs
 All parameters of :class:`Stream` (except `channels`, `dtype`,
 `callback` and `finished_callback`) can be used.

 See Also

 play, rec

 """
 ctx = _CallbackContext()
 output_frames = ctx.check_data(data, output_mapping, kwargs.get('device'))
 if dtype is None:
 dtype = ctx.data.dtype # ignore module defaults
 input_frames = ctx.check_out(out, output_frames, channels, dtype,
 input_mapping)
 if input_frames != output_frames:
 raise PortAudioError("len(data) != len(out)")
 ctx.frames = input_frames

 def callback(indata, outdata, frames, time, status):
 assert len(indata) == len(outdata) == frames
 ctx.callback_enter(status, indata)
 ctx.read_indata(indata)
 ctx.write_outdata(outdata)
 ctx.callback_exit()

 ctx.start_stream(Stream, samplerate,
 (ctx.input_channels, ctx.output_channels),
 (ctx.input_dtype, ctx.output_dtype),
 callback, blocking,
 prime_output_buffers_using_stream_callback=False,
 **kwargs)
 return ctx.out

[docs]def wait():
 """Wait for :func:`play`/:func:`rec`/:func:`playrec` to be finished.

 Playback/recording can be stopped with a :class:`KeyboardInterrupt`.

 Returns

 CallbackFlags or None
 If at least one buffer over-/underrun happened during the last
 playback/recording, a :class:`CallbackFlags` object is returned.

 See Also

 get_status

 """
 if _last_callback:
 return _last_callback.wait()

[docs]def stop(ignore_errors=True):
 """Stop playback/recording.

 This only stops :func:`play`, :func:`rec` and :func:`playrec`, but
 has no influence on streams created with :class:`Stream`,
 :class:`InputStream`, :class:`OutputStream`, :class:`RawStream`,
 :class:`RawInputStream`, :class:`RawOutputStream`.

 """
 if _last_callback:
 _last_callback.stream.close(ignore_errors)

[docs]def get_status():
 """Get information about over-/underflows in play()/rec()/playrec().

 Returns

 CallbackFlags
 A :class:`CallbackFlags` object that holds information about the
 last invocation of :func:`play`, :func:`rec` or :func:`playrec`.

 See Also

 wait

 """
 if _last_callback:
 return _last_callback.status
 else:
 raise RuntimeError("play()/rec()/playrec() was not called yet")

[docs]def query_devices(device=None, kind=None):
 """Return information about available devices.

 Information and capabilities of PortAudio devices.
 Devices may support input, output or both input and output.

 To find the default input/output device, use :attr:`default.device`.

 Parameters

 device : int or str, optional
 Numeric device ID or device name substring(s).
 If specified, information about only the given `device` is
 returned in a single dictionary.
 kind : {'input', 'output'}, optional
 If `device` is not specified and `kind` is ``'input'`` or
 ``'output'``, a single dictionary is returned with information
 about the default input or output device, respectively.

 Returns

 dict or DeviceList
 A dictionary with information about the given `device` or -- if
 no `device` was specified -- a :class:`DeviceList` containing
 one dictionary for each available device.
 The dictionaries have the following keys:

 ``'name'``
 The name of the device.
 ``'hostapi'``
 The ID of the corresponding host API. Use
 :func:`query_hostapis` to get information about a host API.
 ``'max_input_channels'``, ``'max_output_channels'``
 The maximum number of input/output channels supported by the
 device. See :attr:`default.channels`.
 ``'default_low_input_latency'``, ``'default_low_output_latency'``
 Default latency values for interactive performance.
 This is used if :attr:`default.latency` (or the `latency`
 argument of :func:`playrec`, :class:`Stream` etc.) is set to
 ``'low'``.
 ``'default_high_input_latency'``, ``'default_high_output_latency'``
 Default latency values for robust non-interactive
 applications (e.g. playing sound files).
 This is used if :attr:`default.latency` (or the `latency`
 argument of :func:`playrec`, :class:`Stream` etc.) is set to
 ``'high'``.
 ``'default_samplerate'``
 The default sampling frequency of the device.
 This is used if :attr:`default.samplerate` is not set.

 Notes

 The list of devices can also be displayed in a terminal:

 .. code-block:: sh

 python3 -m sounddevice

 Examples

 The returned :class:`DeviceList` can be indexed and iterated over
 like a normal :class:`tuple` (yielding the abovementioned
 dictionaries), but it also has a special string representation which
 is shown when used in an interactive Python session.

 Each available device is listed on one line together with the
 corresponding device ID, which can be assigned to
 :attr:`default.device` or used as `device` argument in :func:`play`,
 :class:`Stream` etc.

 The first character of a line is ``>`` for the default input device,
 ``<`` for the default output device and ``*`` for the default
 input/output device. After the device ID and the device name, the
 corresponding host API name is displayed. In the end of each line,
 the maximum number of input and output channels is shown.

 On a GNU/Linux computer it might look somewhat like this:

 >>> import sounddevice as sd
 >>> sd.query_devices()
 0 HDA Intel: ALC662 rev1 Analog (hw:0,0), ALSA (2 in, 2 out)
 1 HDA Intel: ALC662 rev1 Digital (hw:0,1), ALSA (0 in, 2 out)
 2 HDA Intel: HDMI 0 (hw:0,3), ALSA (0 in, 8 out)
 3 sysdefault, ALSA (128 in, 128 out)
 4 front, ALSA (0 in, 2 out)
 5 surround40, ALSA (0 in, 2 out)
 6 surround51, ALSA (0 in, 2 out)
 7 surround71, ALSA (0 in, 2 out)
 8 iec958, ALSA (0 in, 2 out)
 9 spdif, ALSA (0 in, 2 out)
 10 hdmi, ALSA (0 in, 8 out)
 * 11 default, ALSA (128 in, 128 out)
 12 dmix, ALSA (0 in, 2 out)
 13 /dev/dsp, OSS (16 in, 16 out)

 Note that ALSA provides access to some "real" and some "virtual"
 devices. The latter sometimes have a ridiculously high number of
 (virtual) inputs and outputs.

 On Mac OS X, you might get something similar to this:

 >>> sd.query_devices()
 0 Built-in Line Input, Core Audio (2 in, 0 out)
 > 1 Built-in Digital Input, Core Audio (2 in, 0 out)
 < 2 Built-in Output, Core Audio (0 in, 2 out)
 3 Built-in Line Output, Core Audio (0 in, 2 out)
 4 Built-in Digital Output, Core Audio (0 in, 2 out)

 """
 if kind not in ('input', 'output', None):
 raise ValueError("Invalid kind: {0!r}".format(kind))
 if device is None and kind is None:
 return DeviceList(query_devices(i)
 for i in range(_check(_lib.Pa_GetDeviceCount())))
 device = _get_device_id(device, kind, raise_on_error=True)
 info = _lib.Pa_GetDeviceInfo(device)
 if not info:
 raise PortAudioError("Error querying device {0}".format(device))
 assert info.structVersion == 2
 if info.hostApi == _lib.Pa_HostApiTypeIdToHostApiIndex(_lib.paDirectSound):
 encoding = 'mbcs'
 else:
 encoding = 'utf-8'
 device_dict = {
 'name': _ffi.string(info.name).decode(encoding, 'replace'),
 'hostapi': info.hostApi,
 'max_input_channels': info.maxInputChannels,
 'max_output_channels': info.maxOutputChannels,
 'default_low_input_latency': info.defaultLowInputLatency,
 'default_low_output_latency': info.defaultLowOutputLatency,
 'default_high_input_latency': info.defaultHighInputLatency,
 'default_high_output_latency': info.defaultHighOutputLatency,
 'default_samplerate': info.defaultSampleRate,
 }
 if kind and device_dict['max_' + kind + '_channels'] < 1:
 raise ValueError(
 "Not an {0} device: {1!r}".format(kind, device_dict['name']))
 return device_dict

[docs]def query_hostapis(index=None):
 """Return information about available host APIs.

 Parameters

 index : int, optional
 If specified, information about only the given host API `index`
 is returned in a single dictionary.

 Returns

 dict or tuple of dict
 A dictionary with information about the given host API `index`
 or -- if no `index` was specified -- a tuple containing one
 dictionary for each available host API.
 The dictionaries have the following keys:

 ``'name'``
 The name of the host API.
 ``'devices'``
 A list of device IDs belonging to the host API.
 Use :func:`query_devices` to get information about a device.
 ``'default_input_device'``, ``'default_output_device'``
 The device ID of the default input/output device of the host
 API. If no default input/output device exists for the given
 host API, this is -1.

 .. note:: The overall default device(s) -- which can be
 overwritten by assigning to :attr:`default.device` --
 take(s) precedence over :attr:`default.hostapi` and the
 information in the abovementioned dictionaries.

 See Also

 query_devices

 """
 if index is None:
 return tuple(query_hostapis(i)
 for i in range(_check(_lib.Pa_GetHostApiCount())))
 info = _lib.Pa_GetHostApiInfo(index)
 if not info:
 raise PortAudioError("Error querying host API {0}".format(index))
 assert info.structVersion == 1
 return {
 'name': _ffi.string(info.name).decode(),
 'devices': [_lib.Pa_HostApiDeviceIndexToDeviceIndex(index, i)
 for i in range(info.deviceCount)],
 'default_input_device': info.defaultInputDevice,
 'default_output_device': info.defaultOutputDevice,
 }

[docs]def check_input_settings(device=None, channels=None, dtype=None,
 samplerate=None):
 """Check if given input device settings are supported.

 All parameters are optional, :obj:`default` settings are used for
 any unspecified parameters. If the settings are supported, the
 function does nothing; if not, an exception is raised.

 Parameters

 device : int or str, optional
 Device ID or device name substring, see :attr:`default.device`.
 channels : int, optional
 Number of input channels, see :attr:`default.channels`.
 dtype : str or numpy.dtype, optional
 Data type for input samples, see :attr:`default.dtype`.
 samplerate : float, optional
 Sampling frequency, see :attr:`default.samplerate`.

 """
 parameters, dtype, samplesize, samplerate = _get_stream_parameters(
 'input', device=device, channels=channels, dtype=dtype, latency=None,
 samplerate=samplerate)
 _check(_lib.Pa_IsFormatSupported(parameters, _ffi.NULL, samplerate))

[docs]def check_output_settings(device=None, channels=None, dtype=None,
 samplerate=None):
 """Check if given output device settings are supported.

 Same as :func:`check_input_settings`, just for output device
 settings.

 """
 parameters, dtype, samplesize, samplerate = _get_stream_parameters(
 'output', device=device, channels=channels, dtype=dtype, latency=None,
 samplerate=samplerate)
 _check(_lib.Pa_IsFormatSupported(_ffi.NULL, parameters, samplerate))

[docs]def sleep(msec):
 """Put the caller to sleep for at least `msec` milliseconds.

 The function may sleep longer than requested so don't rely on this
 for accurate musical timing.

 """
 _lib.Pa_Sleep(msec)

[docs]def get_portaudio_version():
 """Get version information for the PortAudio library.

 Returns the release number and a textual description of the current
 PortAudio build, e.g. ::

 (1899, 'PortAudio V19-devel (built Feb 15 2014 23:28:00)')

 """
 return _lib.Pa_GetVersion(), _ffi.string(_lib.Pa_GetVersionText()).decode()

class _StreamBase(object):
 """Base class for Raw{Input,Output}Stream."""

 def __init__(self, kind, samplerate, blocksize, device, channels, dtype,
 latency, callback_wrapper, finished_callback,
 clip_off, dither_off, never_drop_input,
 prime_output_buffers_using_stream_callback):
 if blocksize is None:
 blocksize = default.blocksize
 if clip_off is None:
 clip_off = default.clip_off
 if dither_off is None:
 dither_off = default.dither_off
 if never_drop_input is None:
 never_drop_input = default.never_drop_input
 if prime_output_buffers_using_stream_callback is None:
 prime_output_buffers_using_stream_callback = \
 default.prime_output_buffers_using_stream_callback

 stream_flags = _lib.paNoFlag
 if clip_off:
 stream_flags |= _lib.paClipOff
 if dither_off:
 stream_flags |= _lib.paDitherOff
 if never_drop_input:
 stream_flags |= _lib.paNeverDropInput
 if prime_output_buffers_using_stream_callback:
 stream_flags |= _lib.paPrimeOutputBuffersUsingStreamCallback

 if kind == 'duplex':
 idevice, odevice = _split(device)
 ichannels, ochannels = _split(channels)
 idtype, odtype = _split(dtype)
 ilatency, olatency = _split(latency)
 iparameters, idtype, isize, isamplerate = _get_stream_parameters(
 'input', idevice, ichannels, idtype, ilatency, samplerate)
 oparameters, odtype, osize, osamplerate = _get_stream_parameters(
 'output', odevice, ochannels, odtype, olatency, samplerate)
 self._dtype = idtype, odtype
 self._device = iparameters.device, oparameters.device
 self._channels = iparameters.channelCount, oparameters.channelCount
 self._samplesize = isize, osize
 if isamplerate != osamplerate:
 raise PortAudioError(
 "Input and output device must have the same samplerate")
 else:
 samplerate = isamplerate
 else:
 parameters, self._dtype, self._samplesize, samplerate = \
 _get_stream_parameters(
 kind, device, channels, dtype, latency, samplerate)
 self._device = parameters.device
 self._channels = parameters.channelCount

 if kind == 'input':
 iparameters = parameters
 oparameters = _ffi.NULL
 elif kind == 'output':
 iparameters = _ffi.NULL
 oparameters = parameters

 if callback_wrapper:
 self._callback = _ffi.callback(
 "PaStreamCallback", callback_wrapper, error=_lib.paAbort)
 else:
 self._callback = _ffi.NULL

 self._ptr = _ffi.new("PaStream**")
 _check(_lib.Pa_OpenStream(self._ptr, iparameters, oparameters,
 samplerate, blocksize, stream_flags,
 self._callback, _ffi.NULL),
 "Error opening {0}".format(self.__class__.__name__))

 # dereference PaStream** --> PaStream*
 self._ptr = self._ptr[0]

 self._blocksize = blocksize
 info = _lib.Pa_GetStreamInfo(self._ptr)
 if not info:
 raise PortAudioError("Could not obtain stream info")
 # TODO: assert info.structVersion == 1
 self._samplerate = info.sampleRate
 if not oparameters:
 self._latency = info.inputLatency
 elif not iparameters:
 self._latency = info.outputLatency
 else:
 self._latency = info.inputLatency, info.outputLatency

 if finished_callback:

 def finished_callback_wrapper(_):
 return finished_callback()

 self._finished_callback = _ffi.callback(
 "PaStreamFinishedCallback", finished_callback_wrapper)
 _check(_lib.Pa_SetStreamFinishedCallback(self._ptr,
 self._finished_callback))

 # Avoid confusion if something goes wrong before assigning self._ptr:
 _ptr = _ffi.NULL

 @property
 def samplerate(self):
 """The sampling frequency in Hertz (= frames per second).

 In cases where the hardware sampling frequency is inaccurate and
 PortAudio is aware of it, the value of this field may be
 different from the `samplerate` parameter passed to
 :class:`Stream`. If information about the actual hardware
 sampling frequency is not available, this field will have the
 same value as the `samplerate` parameter passed to
 :class:`Stream`.

 """
 return self._samplerate

 @property
 def blocksize(self):
 """Number of frames per block.

 The special value 0 means that the blocksize can change between
 blocks. See the `blocksize` argument of :class:`Stream`.

 """
 return self._blocksize

 @property
 def device(self):
 """IDs of the input/output device."""
 return self._device

 @property
 def channels(self):
 """The number of input/output channels."""
 return self._channels

 @property
 def dtype(self):
 """Data type of the audio samples.

 See Also

 default.dtype, samplesize

 """
 return self._dtype

 @property
 def samplesize(self):
 """The size in bytes of a single sample.

 See Also

 dtype

 """
 return self._samplesize

 @property
 def latency(self):
 """The input/output latency of the stream in seconds.

 This value provides the most accurate estimate of input/output
 latency available to the implementation.
 It may differ significantly from the `latency` value(s) passed
 to :class:`Stream()`.

 """
 return self._latency

 @property
 def active(self):
 """``True`` when the stream is active, ``False`` otherwise.

 A stream is active after a successful call to :meth:`start`,
 until it becomes inactive either as a result of a call to
 :meth:`.stop` or :meth:`abort`, or as a result of an exception
 raised in the stream callback.
 In the latter case, the stream is considered inactive after the
 last buffer has finished playing.

 See Also

 stopped

 """
 return _check(_lib.Pa_IsStreamActive(self._ptr)) == 1

 @property
 def stopped(self):
 """``True`` when the stream is stopped, ``False`` otherwise.

 A stream is considered to be stopped prior to a successful call
 to :meth:`start` and after a successful call to :meth:`.stop` or
 :meth:`abort`. If a stream callback is cancelled (by raising an
 exception) the stream is *not* considered to be stopped.

 See Also

 active

 """
 return _check(_lib.Pa_IsStreamStopped(self._ptr)) == 1

 @property
 def time(self):
 """The current stream time in seconds.

 This is according to the same clock used to generate the
 timestamps passed with the `time` argument to the stream
 callback (see the `callback` argument of :class:`Stream`).
 The time values are monotonically increasing and have
 unspecified origin.

 This provides valid time values for the entire life of the
 stream, from when the stream is opened until it is closed.
 Starting and stopping the stream does not affect the passage of
 time as provided here.

 This time may be used for synchronizing other events to the
 audio stream, for example synchronizing audio to MIDI.

 """
 time = _lib.Pa_GetStreamTime(self._ptr)
 if not time:
 raise PortAudioError("Error getting stream time")
 return time

 @property
 def cpu_load(self):
 """CPU usage information for the stream.

 The "CPU Load" is a fraction of total CPU time consumed by a
 callback stream's audio processing routines including, but not
 limited to the client supplied stream callback. This function
 does not work with blocking read/write streams.

 This may be used in the stream callback function or in the
 application.
 It provides a floating point value, typically between 0.0 and
 1.0, where 1.0 indicates that the stream callback is consuming
 the maximum number of CPU cycles possible to maintain real-time
 operation. A value of 0.5 would imply that PortAudio and the
 stream callback was consuming roughly 50% of the available CPU
 time. The value may exceed 1.0. A value of 0.0 will always be
 returned for a blocking read/write stream, or if an error
 occurs.

 """
 return _lib.Pa_GetStreamCpuLoad(self._ptr)

 def __del__(self):
 """Close stream at garbage collection."""
 self.close()

 def __enter__(self):
 """Start the stream in the beginning of a "with" statement."""
 self.start()
 return self

 def __exit__(self, *args):
 """Stop and close the stream when exiting a "with" statement."""
 self.stop()
 self.close()

 def start(self):
 """Commence audio processing.

 See Also

 stop, abort

 """
 err = _lib.Pa_StartStream(self._ptr)
 if err != _lib.paStreamIsNotStopped:
 _check(err, "Error starting stream")

 def stop(self):
 """Terminate audio processing.

 This waits until all pending audio buffers have been played
 before it returns.

 See Also

 start, abort

 """
 err = _lib.Pa_StopStream(self._ptr)
 if err != _lib.paStreamIsStopped:
 _check(err, "Error stopping stream")

 def abort(self):
 """Terminate audio processing immediately.

 This does not wait for pending buffers to complete.

 See Also

 start, stop

 """
 err = _lib.Pa_AbortStream(self._ptr)
 if err != _lib.paStreamIsStopped:
 _check(err, "Error aborting stream")

 def close(self, ignore_errors=True):
 """Close the stream.

 If the audio stream is active any pending buffers are discarded
 as if :meth:`abort` had been called.

 """
 err = _lib.Pa_CloseStream(self._ptr)
 if not ignore_errors:
 _check(err, "Error closing stream")

[docs]class RawInputStream(_StreamBase):
 """Raw stream for recording only. See __init__() and RawStream."""

 def __init__(self, samplerate=None, blocksize=None,
 device=None, channels=None, dtype=None, latency=None,
 callback=None, finished_callback=None,
 clip_off=None, dither_off=None, never_drop_input=None,
 prime_output_buffers_using_stream_callback=None):
 """Open a "raw" input stream.

 This is the same as :class:`InputStream`, except that the
 `callback` function and :meth:`~RawStream.read` work on plain
 Python buffer objects instead of on NumPy arrays.
 NumPy is not necessary to use this.

 Parameters

 dtype : str
 See :class:`RawStream`.
 callback : callable
 User-supplied function to consume audio data in response to
 requests from an active stream.
 The callback must have this signature::

 callback(indata: buffer, frames: int,
 time: CData, status: CallbackFlags) -> None

 The arguments are the same as in the `callback` parameter of
 :class:`RawStream`, except that `outdata` is missing.

 See Also

 RawStream, Stream

 """

 def callback_wrapper(iptr, optr, frames, time, status, _):
 data = _buffer(iptr, frames, self._channels, self._samplesize)
 return _wrap_callback(callback, data, frames, time, status)

 _StreamBase.__init__(
 self, 'input', samplerate, blocksize, device, channels, dtype,
 latency, callback and callback_wrapper, finished_callback,
 clip_off, dither_off, never_drop_input,
 prime_output_buffers_using_stream_callback)

 @property
 def read_available(self):
 """The number of frames that can be read without waiting.

 Returns a value representing the maximum number of frames that
 can be read from the stream without blocking or busy waiting.

 """
 return _check(_lib.Pa_GetStreamReadAvailable(self._ptr))

 def read(self, frames):
 """Read samples from the stream into a buffer.

 This is the same as :meth:`Stream.read`, except that it returns
 a plain Python buffer object instead of a NumPy array.
 NumPy is not necessary to use this.

 Parameters

 frames : int
 The number of frames to be read. See :meth:`Stream.read`.

 Returns

 data : buffer
 A buffer of interleaved samples. The buffer contains
 samples in the format specified by the `dtype` parameter
 used to open the stream, and the number of channels
 specified by `channels`.
 See also :attr:`Stream.samplesize`.
 overflowed : bool
 See :meth:`Stream.read`.

 """
 channels, _ = _split(self._channels)
 samplesize, _ = _split(self._samplesize)
 data = _ffi.new("signed char[]", channels * samplesize * frames)
 err = _lib.Pa_ReadStream(self._ptr, data, frames)
 if err == _lib.paInputOverflowed:
 overflowed = True
 else:
 _check(err)
 overflowed = False
 return _ffi.buffer(data), overflowed

[docs]class RawOutputStream(_StreamBase):
 """Raw stream for playback only. See __init__() and RawStream."""

 def __init__(self, samplerate=None, blocksize=None,
 device=None, channels=None, dtype=None, latency=None,
 callback=None, finished_callback=None,
 clip_off=None, dither_off=None, never_drop_input=None,
 prime_output_buffers_using_stream_callback=None):
 """Open a "raw" output stream.

 This is the same as :class:`OutputStream`, except that the
 `callback` function and :meth:`~RawStream.write` work on plain
 Python buffer objects instead of on NumPy arrays.
 NumPy is not necessary to use this.

 Parameters

 dtype : str
 See :class:`RawStream`.
 callback : callable
 User-supplied function to generate audio data in response to
 requests from an active stream.
 The callback must have this signature::

 callback(outdata: buffer, frames: int,
 time: CData, status: CallbackFlags) -> None

 The arguments are the same as in the `callback` parameter of
 :class:`RawStream`, except that `indata` is missing.

 See Also

 RawStream, Stream

 """

 def callback_wrapper(iptr, optr, frames, time, status, _):
 data = _buffer(optr, frames, self._channels, self._samplesize)
 return _wrap_callback(callback, data, frames, time, status)

 _StreamBase.__init__(
 self, 'output', samplerate, blocksize, device, channels, dtype,
 latency, callback and callback_wrapper, finished_callback,
 clip_off, dither_off, never_drop_input,
 prime_output_buffers_using_stream_callback)

 @property
 def write_available(self):
 """The number of frames that can be written without waiting.

 Returns a value representing the maximum number of frames that
 can be written to the stream without blocking or busy waiting.

 """
 return _check(_lib.Pa_GetStreamWriteAvailable(self._ptr))

 def write(self, data):
 """Write samples to the stream.

 This is the same as :meth:`Stream.write`, except that it expects
 a plain Python buffer object instead of a NumPy array.
 NumPy is not necessary to use this.

 Parameters

 data : buffer or bytes or iterable of int
 A buffer of interleaved samples. The buffer contains
 samples in the format specified by the `dtype` argument used
 to open the stream, and the number of channels specified by
 `channels`. The length of the buffer is not constrained to
 a specific range, however high performance applications will
 want to match this parameter to the `blocksize` parameter
 used when opening the stream.
 See also :attr:`Stream.samplesize`.

 Returns

 underflowed : bool
 See :meth:`Stream.write`.

 """
 try:
 data = _ffi.from_buffer(data)
 except AttributeError:
 pass # from_buffer() not supported
 except TypeError:
 pass # input is not a buffer
 _, samplesize = _split(self._samplesize)
 _, channels = _split(self._channels)
 samples, remainder = divmod(len(data), samplesize)
 if remainder:
 raise ValueError("len(data) not divisible by samplesize")
 frames, remainder = divmod(samples, channels)
 if remainder:
 raise ValueError("Number of samples not divisible by channels")
 err = _lib.Pa_WriteStream(self._ptr, data, frames)
 if err == _lib.paOutputUnderflowed:
 underflowed = True
 else:
 _check(err)
 underflowed = False
 return underflowed

[docs]class RawStream(RawInputStream, RawOutputStream):
 """Raw stream for playback and recording. See __init__()."""

 def __init__(self, samplerate=None, blocksize=None,
 device=None, channels=None, dtype=None, latency=None,
 callback=None, finished_callback=None,
 clip_off=None, dither_off=None, never_drop_input=None,
 prime_output_buffers_using_stream_callback=None):
 """Open a "raw" input/output stream.

 This is the same as :class:`Stream`, except that the `callback`
 function and :meth:`read`/:meth:`write` work on plain Python
 buffer objects instead of on NumPy arrays.
 NumPy is not necessary to use this.

 To open "raw" input-only or output-only stream use
 :class:`RawInputStream` or :class:`RawOutputStream`,
 respectively.
 If you want to handle audio data as NumPy arrays instead of
 buffer objects, use :class:`Stream`, :class:`InputStream` or
 :class:`OutputStream`.

 Parameters

 dtype : str or pair of str
 The sample format of the buffers provided to the stream
 callback, :meth:`read` or :meth:`write`.
 In addition to the formats supported by :class:`Stream`
 (``'float32'``, ``'int32'``, ``'int16'``, ``'int8'``,
 ``'uint8'``), this also supports ``'int24'``, i.e.
 packed 24 bit format.
 The default value can be changed with :attr:`default.dtype`.
 See also :attr:`Stream.samplesize`.
 callback : callable
 User-supplied function to consume, process or generate audio
 data in response to requests from an active stream.
 The callback must have this signature::

 callback(indata: buffer, outdata: buffer, frames: int,
 time: CData, status: CallbackFlags) -> None

 The arguments are the same as in the `callback` parameter of
 :class:`Stream`, except that `indata` and `outdata` are
 plain Python buffer objects instead of NumPy arrays.

 See Also

 RawInputStream, RawOutputStream, Stream

 """

 def callback_wrapper(iptr, optr, frames, time, status, _):
 ichannels, ochannels = self._channels
 isize, osize = self._samplesize
 idata = _buffer(iptr, frames, ichannels, isize)
 odata = _buffer(optr, frames, ochannels, osize)
 return _wrap_callback(callback, idata, odata, frames, time, status)

 _StreamBase.__init__(
 self, 'duplex', samplerate, blocksize, device, channels, dtype,
 latency, callback and callback_wrapper, finished_callback,
 clip_off, dither_off, never_drop_input,
 prime_output_buffers_using_stream_callback)

[docs]class InputStream(RawInputStream):
 """Stream for input only. See __init__() and Stream."""

 def __init__(self, samplerate=None, blocksize=None,
 device=None, channels=None, dtype=None, latency=None,
 callback=None, finished_callback=None,
 clip_off=None, dither_off=None, never_drop_input=None,
 prime_output_buffers_using_stream_callback=None):
 """Open an input stream.

 This has the same methods and attributes as :class:`Stream`,
 except :meth:`~Stream.write` and
 :attr:`~Stream.write_available`. Furthermore, the stream
 callback is expected to have a different signature (see below).

 Parameters

 callback : callable
 User-supplied function to consume audio in response to
 requests from an active stream.
 The callback must have this signature::

 callback(indata: numpy.ndarray, frames: int,
 time: CData, status: CallbackFlags) -> None

 The arguments are the same as in the `callback` parameter of
 :class:`Stream`, except that `outdata` is missing.

 See Also

 Stream, RawInputStream

 """

 def callback_wrapper(iptr, optr, frames, time, status, _):
 buffer = _buffer(iptr, frames, self._channels, self._samplesize)
 data = _array(buffer, self._channels, self._dtype)
 return _wrap_callback(callback, data, frames, time, status)

 _StreamBase.__init__(
 self, 'input', samplerate, blocksize, device, channels, dtype,
 latency, callback and callback_wrapper, finished_callback,
 clip_off, dither_off, never_drop_input,
 prime_output_buffers_using_stream_callback)

 def read(self, frames):
 """Read samples from the stream into a NumPy array.

 The function doesn't return until all requested `frames` have
 been read -- this may involve waiting for the operating system
 to supply the data (except if no more than
 :attr:`read_available` frames were requested).

 This is the same as :meth:`RawStream.read`, except that it
 returns a NumPy array instead of a plain Python buffer object.

 Parameters

 frames : int
 The number of frames to be read. This parameter is not
 constrained to a specific range, however high performance
 applications will want to match this parameter to the
 `blocksize` parameter used when opening the stream.

 Returns

 data : numpy.ndarray
 A two-dimensional :class:`numpy.ndarray` with one column per
 channel (i.e. with a shape of `(frames, channels)`) and
 with a data type specified by :attr:`dtype`.
 overflowed : bool
 ``True`` if input data was discarded by PortAudio after the
 previous call and before this call.

 """
 dtype, _ = _split(self._dtype)
 channels, _ = _split(self._channels)
 data, overflowed = RawInputStream.read(self, frames)
 data = _array(data, channels, dtype)
 return data, overflowed

[docs]class OutputStream(RawOutputStream):
 """Stream for output only. See __init__() and Stream."""

 def __init__(self, samplerate=None, blocksize=None,
 device=None, channels=None, dtype=None, latency=None,
 callback=None, finished_callback=None,
 clip_off=None, dither_off=None, never_drop_input=None,
 prime_output_buffers_using_stream_callback=None):
 """Open an output stream.

 This has the same methods and attributes as :class:`Stream`,
 except :meth:`~Stream.read` and :attr:`~Stream.read_available`.
 Furthermore, the stream callback is expected to have a different
 signature (see below).

 Parameters

 callback : callable
 User-supplied function to generate audio data in response to
 requests from an active stream.
 The callback must have this signature::

 callback(outdata: numpy.ndarray, frames: int,
 time: CData, status: CallbackFlags) -> None

 The arguments are the same as in the `callback` parameter of
 :class:`Stream`, except that `indata` is missing.

 See Also

 Stream, RawOutputStream

 """

 def callback_wrapper(iptr, optr, frames, time, status, _):
 buffer = _buffer(optr, frames, self._channels, self._samplesize)
 data = _array(buffer, self._channels, self._dtype)
 return _wrap_callback(callback, data, frames, time, status)

 _StreamBase.__init__(
 self, 'output', samplerate, blocksize, device, channels, dtype,
 latency, callback and callback_wrapper, finished_callback,
 clip_off, dither_off, never_drop_input,
 prime_output_buffers_using_stream_callback)

 def write(self, data):
 """Write samples to the stream.

 This function doesn't return until the entire buffer has been
 consumed -- this may involve waiting for the operating system to
 consume the data (except if `data` contains no more than
 :attr:`write_available` frames).

 This is the same as :meth:`RawStream.write`, except that it
 expects a NumPy array instead of a plain Python buffer object.

 Parameters

 data : array_like
 A two-dimensional array-like object with one column per
 channel (i.e. with a shape of `(frames, channels)`) and
 with a data type specified by :attr:`dtype`.
 A one-dimensional array can be used for mono data.
 The array layout must be C-contiguous (see
 :func:`numpy.ascontiguousarray`).

 The length of the buffer is not constrained to a specific
 range, however high performance applications will want to
 match this parameter to the `blocksize` parameter used when
 opening the stream.

 Returns

 underflowed : bool
 ``True`` if additional output data was inserted after the
 previous call and before this call.

 """
 import numpy as np
 data = np.asarray(data)
 _, dtype = _split(self._dtype)
 _, channels = _split(self._channels)
 if data.ndim > 1 and data.shape[1] != channels:
 raise ValueError("Number of channels must match")
 if data.dtype != dtype:
 raise TypeError("dtype mismatch: {0!r} vs {1!r}".format(
 data.dtype.name, dtype))
 if not data.flags.c_contiguous:
 raise TypeError("data must be C-contiguous")
 return RawOutputStream.write(self, data)

[docs]class Stream(InputStream, OutputStream):
 """Stream for input and output. See __init__()."""

 def __init__(self, samplerate=None, blocksize=None,
 device=None, channels=None, dtype=None, latency=None,
 callback=None, finished_callback=None,
 clip_off=None, dither_off=None, never_drop_input=None,
 prime_output_buffers_using_stream_callback=None):
 """Open a stream for input and output.

 To open an input-only or output-only stream use
 :class:`InputStream` or :class:`OutputStream`, respectively.
 If you want to handle audio data as buffer objects instead of
 NumPy arrays, use :class:`RawStream`, :class:`RawInputStream` or
 :class:`RawOutputStream`.

 A single stream can provide multiple channels of real-time
 streaming audio input and output to a client application. A
 stream provides access to audio hardware represented by one or
 more devices. Depending on the underlying Host API, it may be
 possible to open multiple streams using the same device, however
 this behavior is implementation defined. Portable applications
 should assume that a device may be simultaneously used by at
 most one stream.

 The arguments `device`, `channels`, `dtype` and `latency` can be
 either single values (which will be used for both input and
 output parameters) or pairs of values (where the first one is
 the value for the input and the second one for the output).

 All arguments are optional, the values for unspecified
 parameters are taken from the :attr:`default` object.
 If one of the values of a parameter pair is ``None``, the
 corresponding value from :attr:`default` will be used instead.

 The created stream is inactive (see :attr:`active`,
 :attr:`stopped`). It can be started with :meth:`start`.

 Every stream object is also a
 :ref:`context manager <python:context-managers>`, i.e. it can be
 used in a :ref:`with statement <python:with>` to automatically
 call :meth:`start` in the beginning of the statement and
 :meth:`stop` and :meth:`close` on exit.

 Parameters

 samplerate : float, optional
 The desired sampling frequency (for both input and output).
 The default value can be changed with
 :attr:`default.samplerate`.
 blocksize : int, optional
 The number of frames passed to the stream callback function,
 or the preferred block granularity for a blocking read/write
 stream.
 The special value `blocksize=0` (which is the default) may
 be used to request that the stream callback will receive an
 optimal (and possibly varying) number of frames based on
 host requirements and the requested latency settings.
 The default value can be changed with
 :attr:`default.blocksize`.

 .. note:: With some host APIs, the use of non-zero
 `blocksize` for a callback stream may introduce an
 additional layer of buffering which could introduce
 additional latency. PortAudio guarantees that the
 additional latency will be kept to the theoretical
 minimum however, it is strongly recommended that a
 non-zero `blocksize` value only be used when your
 algorithm requires a fixed number of frames per stream
 callback.
 device : int or str or pair thereof, optional
 Device index(es) or query string(s) specifying the device(s)
 to be used. The default value(s) can be changed with
 :attr:`default.device`.
 channels : int or pair of int, optional
 The number of channels of sound to be delivered to the
 stream callback or accessed by :meth:`read` or
 :meth:`write`. It can range from 1 to the value of
 ``'max_input_channels'``/``'max_output_channels'`` in the
 dict returned by :func:`query_devices`.
 By default, the maximum possible number of channels for the
 selected device is used (which may not be what you want; see
 :func:`query_devices`). The default value(s) can be changed
 with :attr:`default.channels`.
 dtype : str or numpy.dtype or pair thereof, optional
 The sample format of the :class:`numpy.ndarray` provided to
 the stream callback, :meth:`read` or :meth:`write`.
 It may be any of `float32`, `int32`, `int16`, `int8`,
 `uint8`. See :class:`numpy.dtype`.
 The `float64` data type is not supported, this is only
 supported for convenience in
 :func:`play`/:func:`rec`/:func:`playrec`.
 The packed 24 bit format ``'int24'`` is only supported in
 the "raw" stream classes, see :class:`RawStream`. The
 default value(s) can be changed with :attr:`default.dtype`.
 latency : float or {'low', 'high'} or pair thereof, optional
 The desired latency in seconds. The special values
 ``'low'`` and ``'high'`` (latter being the default) select
 the default low and high latency, respectively (see
 :func:`query_devices`). The default value(s) can be changed
 with :attr:`default.latency`.
 Where practical, implementations should configure their
 latency based on this parameter, otherwise they may choose
 the closest viable latency instead. Unless the suggested
 latency is greater than the absolute upper limit for the
 device, implementations should round the `latency` up to the
 next practical value -- i.e. to provide an equal or higher
 latency wherever possible. Actual latency values for an
 open stream may be retrieved using the :attr:`latency`
 attribute.
 callback : callable, optional
 User-supplied function to consume, process or generate audio
 data in response to requests from an :attr:`active` stream.
 When a stream is running, PortAudio calls the stream
 callback periodically. The callback function is responsible
 for processing and filling input and output buffers,
 respectively.

 If no `callback` is given, the stream will be opened in
 "blocking read/write" mode. In blocking mode, the client
 can receive sample data using :meth:`read` and write sample
 data using :meth:`write`, the number of frames that may be
 read or written without blocking is returned by
 :attr:`read_available` and :attr:`write_available`,
 respectively.

 The callback must have this signature::

 callback(indata: ndarray, outdata: ndarray, frames: int,
 time: CData, status: CallbackFlags) -> None

 The first and second argument are the input and output
 buffer, respectively, as two-dimensional
 :class:`numpy.ndarray` with one column per channel (i.e.
 with a shape of *(frames, channels)*) and with a data type
 specified by :attr:`dtype`.
 The output buffer contains uninitialized data and the
 `callback` is supposed to fill it with proper audio data.
 If no data is available, the buffer should be filled with
 zeros (e.g. by using ``outdata.fill(0)``).

 .. note:: In Python, assigning to an identifier merely
 re-binds the identifier to another object, so this *will
 not work* as expected::

 outdata = my_data # Don't do this!

 To actually assign data to the buffer itself, you can use
 indexing, e.g.::

 outdata[:] = my_data

 ... which fills the whole buffer, or::

 outdata[:, 1] = my_channel_data

 ... which only fills one channel.

 The third argument holds the number of frames to be
 processed by the stream callback. This is the same as the
 length of the input and output buffers.

 The forth argument provides a CFFI structure with
 timestamps indicating the ADC capture time of the first
 sample in the input buffer (`time.inputBufferAdcTime`), the
 DAC output time of the first sample in the output buffer
 (`time.outputBufferDacTime`) and the time the callback was
 invoked (`time.currentTime`).
 These time values are expressed in seconds and are
 synchronised with the time base used by :attr:`time` for the
 associated stream.

 The fifth argument is a :class:`CallbackFlags` instance
 indicating whether input and/or output buffers have been
 inserted or will be dropped to overcome underflow or
 overflow conditions.

 If an exception is raised in the `callback`, it will not be
 called again.
 If :class:`CallbackAbort` is raised, the stream will finish
 as soon as possible. If :class:`CallbackStop` is raised,
 the stream will continue until all buffers generated by the
 callback have been played. This may be useful in
 applications such as soundfile players where a specific
 duration of output is required.
 If another exception is raised, its traceback is printed to
 :obj:`sys.stderr`.
 Exceptions are *not* propagated to the main thread, i.e. the
 main Python program keeps running as if nothing had
 happened.

 .. note:: The `callback` must always fill the entire output
 buffer, no matter if or which exceptions are raised.

 If no exception is raised in the `callback`, it
 automatically continues to be called until :meth:`.stop`,
 :meth:`abort` or :meth:`close` are used to stop the stream.

 The PortAudio stream callback runs at very high or real-time
 priority. It is required to consistently meet its time
 deadlines. Do not allocate memory, access the file system,
 call library functions or call other functions from the
 stream callback that may block or take an unpredictable
 amount of time to complete. With the exception of
 :attr:`cpu_load` it is not permissible to call PortAudio API
 functions from within the stream callback.

 In order for a stream to maintain glitch-free operation the
 callback must consume and return audio data faster than it
 is recorded and/or played. PortAudio anticipates that each
 callback invocation may execute for a duration approaching
 the duration of `frames` audio frames at the stream's
 sampling frequency. It is reasonable to expect to be able
 to utilise 70% or more of the available CPU time in the
 PortAudio callback. However, due to buffer size adaption
 and other factors, not all host APIs are able to guarantee
 audio stability under heavy CPU load with arbitrary fixed
 callback buffer sizes. When high callback CPU utilisation
 is required the most robust behavior can be achieved by
 using `blocksize=0`.
 finished_callback : callable, optional
 User-supplied function which will be called when the stream
 becomes inactive (i.e. once a call to :meth:`.stop` will not
 block).

 A stream will become inactive after the stream callback
 raises an exception or when :meth:`.stop` or :meth:`.abort`
 is called. For a stream providing audio output, if the
 stream callback raises :class:`CallbackStop`, or
 :meth:`.stop` is called, the stream finished callback will
 not be called until all generated sample data has been
 played. The callback must have this signature::

 finished_callback() -> None

 clip_off : bool, optional
 See :attr:`default.clip_off`.
 dither_off : bool, optional
 See :attr:`default.dither_off`.
 never_drop_input : bool, optional
 See :attr:`default.never_drop_input`.
 prime_output_buffers_using_stream_callback : bool, optional
 See :attr:`default.prime_output_buffers_using_stream_callback`.

 """

 def callback_wrapper(iptr, optr, frames, time, status, _):
 ichannels, ochannels = self._channels
 idtype, odtype = self._dtype
 isize, osize = self._samplesize
 ibuffer = _buffer(iptr, frames, ichannels, isize)
 obuffer = _buffer(optr, frames, ochannels, osize)
 idata = _array(ibuffer, ichannels, idtype)
 odata = _array(obuffer, ochannels, odtype)
 return _wrap_callback(callback, idata, odata, frames, time, status)

 _StreamBase.__init__(
 self, 'duplex', samplerate, blocksize, device, channels, dtype,
 latency, callback and callback_wrapper, finished_callback,
 clip_off, dither_off, never_drop_input,
 prime_output_buffers_using_stream_callback)

[docs]class DeviceList(tuple):
 """A list with information about all available audio devices.

 This class is not meant to be instantiated by the user.
 Instead, it is returned by :func:`query_devices`.
 It contains a dictionary for each available device, holding the keys
 described in :func:`query_devices`.

 This class has a special string representation that is shown as
 return value of :func:`query_devices` if used in an interactive
 Python session. It will also be shown when using the :func:`print`
 function. Furthermore, it can be obtained with :func:`repr` and
 :class:`str() <str>`.

 """

 __slots__ = ()

 def __repr__(self):
 idev, odev = [
 dev if isinstance(dev, int) else _get_device_id(dev, kind)
 for kind, dev in zip(('input', 'output'), default.device)
]
 digits = len(str(_lib.Pa_GetDeviceCount() - 1))
 hostapi_names = [hostapi['name'] for hostapi in query_hostapis()]
 return '\n'.join(
 "{mark} {idx:{dig}} {name}, {ha} ({ins} in, {outs} out)".format(
 mark=(" ", ">", "<", "*")[(idx == idev) + 2 * (idx == odev)],
 idx=idx,
 dig=digits,
 name=info['name'],
 ha=hostapi_names[info['hostapi']],
 ins=info['max_input_channels'],
 outs=info['max_output_channels'])
 for idx, info in enumerate(self))

[docs]class CallbackFlags(object):
 """Flag bits for the `status` argument to a stream `callback`.

 See Also

 Stream

 Examples

 This can be used to collect the errors of multiple `status` objects:

 >>> import sounddevice as sd
 >>> errors = sd.CallbackFlags()
 >>> errors |= status1
 >>> errors |= status2
 >>> errors |= status3
 >>> # and so on ...
 >>> errors.input_overflow
 True

 """

 __slots__ = '_flags'

 def __init__(self, flags=0x0):
 self._flags = flags

 def __repr__(self):
 flags = str(self)
 if not flags:
 flags = "no flags set"
 return "<sounddevice.CallbackFlags: {0}>".format(flags)

 def __str__(self):
 return ", ".join(name.replace('_', ' ') for name in dir(self)
 if not name.startswith('_') and getattr(self, name))

 def __bool__(self):
 return bool(self._flags)

 __nonzero__ = __bool__ # For Python 2.x

 def __ior__(self, other):
 if not isinstance(other, CallbackFlags):
 return NotImplemented
 self._flags |= other._flags
 return self

 @property
 def input_underflow(self):
 """Input underflow.

 In a stream opened with `blocksize=0`, indicates that input data
 is all silence (zeros) because no real data is available. In a
 stream opened with a non-zero `blocksize`, it indicates that one
 or more zero samples have been inserted into the input buffer to
 compensate for an input underflow.

 """
 return self._hasflag(_lib.paInputUnderflow)

 @property
 def input_overflow(self):
 """Input overflow.

 In a stream opened with `blocksize=0`, indicates that data prior
 to the first sample of the input buffer was discarded due to an
 overflow, possibly because the stream callback is using too much
 CPU time. Otherwise indicates that data prior to one or more
 samples in the input buffer was discarded.

 """
 return self._hasflag(_lib.paInputOverflow)

 @property
 def output_underflow(self):
 """Output underflow.

 Indicates that output data (or a gap) was inserted, possibly
 because the stream callback is using too much CPU time.

 """
 return self._hasflag(_lib.paOutputUnderflow)

 @property
 def output_overflow(self):
 """Output overflow.

 Indicates that output data will be discarded because no room is
 available.

 """
 return self._hasflag(_lib.paOutputOverflow)

 @property
 def priming_output(self):
 """Priming output.

 Some of all of the output data will be used to prime the stream,
 input data may be zero.

 """
 return self._hasflag(_lib.paPrimingOutput)

 def _hasflag(self, flag):
 """Helper function to check a given flag."""
 return bool(self._flags & flag)

class _InputOutputPair(object):
 """Parameter pairs for device, channels, dtype and latency."""

 _indexmapping = {'input': 0, 'output': 1}

 def __init__(self, parent, default_attr):
 self._pair = [None, None]
 self._parent = parent
 self._default_attr = default_attr

 def __getitem__(self, index):
 index = self._indexmapping.get(index, index)
 value = self._pair[index]
 if value is None:
 value = getattr(self._parent, self._default_attr)[index]
 return value

 def __setitem__(self, index, value):
 index = self._indexmapping.get(index, index)
 self._pair[index] = value

 def __repr__(self):
 return "[{0[0]!r}, {0[1]!r}]".format(self)

[docs]class default(object):
 """Get/set defaults for the `sounddevice` module.

 The attributes :attr:`device`, :attr:`channels`, :attr:`dtype` and
 :attr:`latency` accept single values which specify the given
 property for both input and output.
 However, if the property differs between input and output, pairs of
 values can be used, where the first value specifies the input and
 the second value specifies the output.
 All other attributes are always single values.

 Examples

 >>> import sounddevice as sd
 >>> sd.default.samplerate = 48000
 >>> sd.default.dtype
 ['float32', 'float32']

 Different values for input and output:

 >>> sd.default.channels = 1, 2

 A single value sets both input and output at the same time:

 >>> sd.default.device = 5
 >>> sd.default.device
 [5, 5]

 An attribute can be set to the "factory default" by assigning
 ``None``:

 >>> sd.default.samplerate = None
 >>> sd.default.device = None, 4

 Use :meth:`reset` to reset all attributes:

 >>> sd.default.reset()

 """
 # The class attributes device, channels, dtype and latency are only
 # provided here for static analysis tools and for the docs.
 # They're overwritten in __init__().
 device = None, None
 """Index or query string of default input/output device.

 If not overwritten, this is queried from PortAudio.

 If a string is given, the device is selected which contains all
 space-separated parts in the right order. Each device string
 contains the name of the corresponding host API in the end.
 The string comparison is case-insensitive.

 See Also

 :func:`query_devices`

 """
 channels = _default_channels = None, None
 """Number of input/output channels.

 The maximum number of channels for a given device can be found out
 with :func:`query_devices`.

 """
 dtype = _default_dtype = 'float32', 'float32'
 """Data type used for input/output samples.

 The types ``'float32'``, ``'int32'``, ``'int16'``, ``'int8'`` and
 ``'uint8'`` can be used for all streams and functions.
 Additionally, :func:`play`, :func:`rec` and :func:`playrec` support
 ``'float64'`` (for convenience, data is merely converted from/to
 ``'float32'``) and :class:`RawInputStream`, :class:`RawOutputStream`
 and :class:`RawStream` support ``'int24'`` (packed 24 bit format --
 not supported in NumPy!).

 If NumPy is available, the corresponding :class:`numpy.dtype`
 objects can be used as well.

 The floating point representations ``'float32'`` and ``'float64'``
 use +1.0 and -1.0 as the maximum and minimum values, respectively.
 ``'uint8'`` is an unsigned 8 bit format where 128 is considered
 "ground".

 """
 latency = _default_latency = 'high', 'high'
 """Suggested input/output latency in seconds.

 The special values ``'low'`` and ``'high'`` can be used to select
 the default low/high latency of the chosen device.
 ``'high'`` is typically more robust (i.e. buffer under-/overflows
 are less likely), but the latency may be too large for interactive
 applications.

 See Also

 :func:`query_devices`

 """

 samplerate = None
 """Sampling frequency in Hertz (= frames per second).

 See Also

 :func:`query_devices`

 """
 blocksize = _lib.paFramesPerBufferUnspecified
 """See the `blocksize` argument of :class:`Stream`."""
 clip_off = False
 """Disable clipping.

 Set to ``True`` to disable default clipping of out of range samples.

 """
 dither_off = False
 """Disable dithering.

 Set to ``True`` to disable default dithering.

 """
 never_drop_input = False
 """Set behavior for input overflow of full-duplex streams.

 Set to ``True`` to request that where possible a full duplex stream
 will not discard overflowed input samples without calling the stream
 callback. This flag is only valid for full-duplex callback streams
 (i.e. only :class:`Stream` and :class:`RawStream` and only if
 `callback` was specified; this includes :func:`playrec`) and only
 when used in combination with `blocksize=0` (the default). Using
 this flag incorrectly results in an error being raised.

 """
 prime_output_buffers_using_stream_callback = False
 """How to fill initial output buffers.

 Set to ``True`` to call the stream callback to fill initial output
 buffers, rather than the default behavior of priming the buffers
 with zeros (silence). This flag has no effect for input-only
 (:class:`InputStream` and :class:`RawInputStream`) and blocking
 read/write streams (i.e. if `callback` wasn't specified).

 """

 def __init__(self):
 # __setattr__() must be avoided here
 vars(self)['device'] = _InputOutputPair(self, '_default_device')
 vars(self)['channels'] = _InputOutputPair(self, '_default_channels')
 vars(self)['dtype'] = _InputOutputPair(self, '_default_dtype')
 vars(self)['latency'] = _InputOutputPair(self, '_default_latency')

 def __setattr__(self, name, value):
 """Only allow setting existing attributes."""
 if name in ('device', 'channels', 'dtype', 'latency'):
 getattr(self, name)._pair[:] = _split(value)
 elif name in dir(self) and name != 'reset':
 object.__setattr__(self, name, value)
 else:
 raise AttributeError(
 "'default' object has no attribute " + repr(name))

 @property
 def _default_device(self):
 return (_lib.Pa_GetDefaultInputDevice(),
 _lib.Pa_GetDefaultOutputDevice())

 @property
 def hostapi(self):
 """Index of the default host API (read-only)."""
 return _check(_lib.Pa_GetDefaultHostApi())

[docs] def reset(self):
 """Reset all attributes to their "factory default"."""
 vars(self).clear()
 self.__init__()

if not hasattr(_ffi, 'I_AM_FAKE'):
 # This object shadows the 'default' class, except when building the docs.
 default = default()

[docs]class PortAudioError(Exception):
 """This exception will be raised on PortAudio errors."""

[docs]class CallbackStop(Exception):
 """Exception to be raised by the user to stop callback processing.

 If this is raised in the stream callback, the callback will not be
 invoked anymore (but all pending audio buffers will be played).

 See Also

 CallbackAbort, :meth:`Stream.stop`, Stream

 """

[docs]class CallbackAbort(Exception):
 """Exception to be raised by the user to abort callback processing.

 If this is raised in the stream callback, all pending buffers are
 discarded and the callback will not be invoked anymore.

 See Also

 CallbackStop, :meth:`Stream.abort`, Stream

 """

class _CallbackContext(object):
 """Helper class for re-use in play()/rec()/playrec() callbacks."""

 blocksize = None
 data = None
 frame = 0
 input_channels = output_channels = None
 input_dtype = output_dtype = None
 input_mapping = output_mapping = None
 silent_channels = None

 def __init__(self, loop=False):
 import threading
 try:
 import numpy
 assert numpy # avoid "imported but unused" message (W0611)
 except ImportError:
 raise ImportError(
 "NumPy must be installed for play()/rec()/playrec()")
 self.loop = loop
 self.event = threading.Event()
 self.status = CallbackFlags()

 def check_data(self, data, mapping, device):
 """Check data and output mapping."""
 import numpy as np
 data = np.asarray(data)
 if data.ndim < 2:
 data = data.reshape(-1, 1)
 frames, channels = data.shape
 dtype = _check_dtype(data.dtype)
 mapping_is_explicit = mapping is not None
 mapping, channels = _check_mapping(mapping, channels)
 if data.shape[1] == 1:
 pass # No problem, mono data is duplicated into arbitrary channels
 elif data.shape[1] != len(mapping):
 raise ValueError(
 "number of output channels != size of output mapping")
 # Apparently, some PortAudio host APIs duplicate mono streams to the
 # first two channels, which is unexpected when specifying mapping=[1].
 # In this case, we play silence on the second channel, but only if the
 # device actually supports a second channel:
 if (mapping_is_explicit and np.array_equal(mapping, [0]) and
 query_devices(device, 'output')['max_output_channels'] >= 2):
 channels = 2
 silent_channels = np.setdiff1d(np.arange(channels), mapping)
 if len(mapping) + len(silent_channels) != channels:
 raise ValueError("each channel may only appear once in mapping")

 self.data = data
 self.output_channels = channels
 self.output_dtype = dtype
 self.output_mapping = mapping
 self.silent_channels = silent_channels
 return frames

 def check_out(self, out, frames, channels, dtype, mapping):
 """Check out, frames, channels, dtype and input mapping."""
 import numpy as np
 if out is None:
 if frames is None:
 raise TypeError("frames must be specified")
 if channels is None:
 channels = default.channels['input']
 if channels is None:
 if mapping is None:
 raise TypeError(
 "Unable to determine number of input channels")
 else:
 channels = len(np.atleast_1d(mapping))
 if dtype is None:
 dtype = default.dtype['input']
 out = np.empty((frames, channels), dtype, order='C')
 else:
 frames, channels = out.shape
 dtype = out.dtype
 dtype = _check_dtype(dtype)
 mapping, channels = _check_mapping(mapping, channels)
 if out.shape[1] != len(mapping):
 raise ValueError(
 "number of input channels != size of input mapping")

 self.out = out
 self.input_channels = channels
 self.input_dtype = dtype
 self.input_mapping = mapping
 return frames

 def callback_enter(self, status, data):
 """Check status and blocksize."""
 self.status |= status
 self.blocksize = min(self.frames - self.frame, len(data))

 def read_indata(self, indata):
 # We manually iterate over each channel in mapping because
 # numpy.take(..., out=...) has a bug:
 # https://github.com/numpy/numpy/pull/4246.
 # Note: using indata[:blocksize, mapping] (a.k.a. 'fancy' indexing)
 # would create unwanted copies (and probably memory allocations).
 for target, source in enumerate(self.input_mapping):
 # If out.dtype is 'float64', 'float32' data is "upgraded" here:
 self.out[self.frame:self.frame + self.blocksize, target] = \
 indata[:self.blocksize, source]

 def write_outdata(self, outdata):
 # 'float64' data is cast to 'float32' here:
 outdata[:self.blocksize, self.output_mapping] = \
 self.data[self.frame:self.frame + self.blocksize]
 outdata[:self.blocksize, self.silent_channels] = 0
 if self.loop and self.blocksize < len(outdata):
 self.frame = 0
 outdata = outdata[self.blocksize:]
 self.blocksize = min(self.frames, len(outdata))
 self.write_outdata(outdata)
 else:
 outdata[self.blocksize:] = 0

 def callback_exit(self):
 if not self.blocksize:
 raise CallbackAbort
 self.frame += self.blocksize

 def finished_callback(self):
 self.event.set()

 def start_stream(self, StreamClass, samplerate, channels, dtype, callback,
 blocking, **kwargs):
 stop() # Stop previous playback/recording
 self.stream = StreamClass(samplerate=samplerate,
 channels=channels,
 dtype=dtype,
 callback=callback,
 finished_callback=self.finished_callback,
 **kwargs)
 self.stream.start()
 global _last_callback
 _last_callback = self
 if blocking:
 self.wait()

 def wait(self):
 """Wait for finished_callback.

 Can be interrupted with a KeyboardInterrupt.

 """
 try:
 self.event.wait()
 finally:
 self.stream.close()
 return self.status if self.status else None

def _check_mapping(mapping, channels):
 """Check mapping, obtain channels."""
 import numpy as np
 if mapping is None:
 mapping = np.arange(channels)
 else:
 mapping = np.atleast_1d(mapping)
 if mapping.min() < 1:
 raise ValueError("channel numbers must not be < 1")
 channels = mapping.max()
 mapping -= 1 # channel numbers start with 1
 return mapping, channels

def _check_dtype(dtype):
 """Check dtype."""
 import numpy as np
 dtype = np.dtype(dtype).name
 if dtype in _sampleformats:
 pass
 elif dtype == 'float64':
 dtype = 'float32'
 else:
 raise TypeError("Unsupported data type: " + repr(dtype))
 return dtype

def _get_stream_parameters(kind, device, channels, dtype, latency, samplerate):
 """Get parameters for one direction (input or output) of a stream."""
 if device is None:
 device = default.device[kind]
 if channels is None:
 channels = default.channels[kind]
 if dtype is None:
 dtype = default.dtype[kind]
 if latency is None:
 latency = default.latency[kind]
 if samplerate is None:
 samplerate = default.samplerate

 device = _get_device_id(device, kind, raise_on_error=True)
 info = query_devices(device)
 if channels is None:
 channels = info['max_' + kind + '_channels']
 try:
 # If NumPy is available, get canonical dtype name
 dtype = _sys.modules['numpy'].dtype(dtype).name
 except Exception:
 pass # NumPy not available or invalid dtype (e.g. 'int24') or ...
 try:
 sampleformat = _sampleformats[dtype]
 except KeyError:
 raise ValueError("Invalid " + kind + " sample format")
 samplesize = _check(_lib.Pa_GetSampleSize(sampleformat))
 if latency in ('low', 'high'):
 latency = info['default_' + latency + '_' + kind + '_latency']
 if samplerate is None:
 samplerate = info['default_samplerate']
 parameters = _ffi.new(
 "PaStreamParameters*",
 (device, channels, sampleformat, latency, _ffi.NULL))
 return parameters, dtype, samplesize, samplerate

def _wrap_callback(callback, *args):
 """Invoke callback function and check for custom exceptions."""
 args = args[:-1] + (CallbackFlags(args[-1]),)
 try:
 callback(*args)
 except CallbackStop:
 return _lib.paComplete
 except CallbackAbort:
 return _lib.paAbort
 return _lib.paContinue

def _buffer(ptr, frames, channels, samplesize):
 """Create a buffer object from a pointer to some memory."""
 return _ffi.buffer(ptr, frames * channels * samplesize)

def _array(buffer, channels, dtype):
 """Create NumPy array from a buffer object."""
 import numpy as np
 data = np.frombuffer(buffer, dtype=dtype)
 data.shape = -1, channels
 return data

def _split(value):
 """Split input/output value into two values."""
 if isinstance(value, str):
 # iterable, but not meant for splitting
 return value, value
 try:
 invalue, outvalue = value
 except TypeError:
 invalue = outvalue = value
 except ValueError:
 raise ValueError("Only single values and pairs are allowed")
 return invalue, outvalue

def _check(err, msg=""):
 """Raise error for non-zero error codes."""
 if err < 0:
 msg += ": " if msg else ""
 if err == _lib.paUnanticipatedHostError:
 info = _lib.Pa_GetLastHostErrorInfo()
 hostapi = _lib.Pa_HostApiTypeIdToHostApiIndex(info.hostApiType)
 msg += "Unanticipated host API {0} error {1}: {2!r}".format(
 hostapi, info.errorCode, _ffi.string(info.errorText).decode())
 else:
 msg += _ffi.string(_lib.Pa_GetErrorText(err)).decode()
 raise PortAudioError(msg)
 return err

def _get_device_id(id_or_query_string, kind, raise_on_error=False):
 """Return device ID given space-separated substrings."""
 assert kind in ('input', 'output', None)

 if id_or_query_string is None:
 id_or_query_string = default.device

 idev, odev = _split(id_or_query_string)
 if kind == 'input':
 id_or_query_string = idev
 elif kind == 'output':
 id_or_query_string = odev
 else:
 if idev == odev:
 id_or_query_string = idev
 else:
 raise ValueError("Input and output device are different: {0!r}"
 .format(id_or_query_string))

 if isinstance(id_or_query_string, int):
 return id_or_query_string
 device_list = []
 for id, info in enumerate(query_devices()):
 if not kind or info['max_' + kind + '_channels'] > 0:
 hostapi_info = query_hostapis(info['hostapi'])
 device_list.append((id, info['name'], hostapi_info['name']))

 query_string = id_or_query_string.lower()
 substrings = query_string.split()
 matches = []
 exact_device_matches = []
 for id, device_string, hostapi_string in device_list:
 full_string = device_string + ', ' + hostapi_string
 pos = 0
 for substring in substrings:
 pos = full_string.lower().find(substring, pos)
 if pos < 0:
 break
 pos += len(substring)
 else:
 matches.append((id, full_string))
 if device_string.lower() == query_string:
 exact_device_matches.append(id)

 if kind is None:
 kind = 'input/output' # Just used for error messages

 if not matches:
 if raise_on_error:
 raise ValueError(
 "No " + kind + " device matching " + repr(id_or_query_string))
 else:
 return -1
 if len(matches) > 1:
 if len(exact_device_matches) == 1:
 return exact_device_matches[0]
 if raise_on_error:
 raise ValueError("Multiple " + kind + " devices found for " +
 repr(id_or_query_string) + ":\n" +
 '\n'.join('[{0}] {1}'.format(id, name)
 for id, name in matches))
 else:
 return -1
 return matches[0][0]

def _initialize():
 """Initialize PortAudio."""
 _check(_lib.Pa_Initialize(), "Error initializing PortAudio")
 _atexit.register(_lib.Pa_Terminate)

def _terminate():
 """Terminate PortAudio."""
 _atexit.unregister(_lib.Pa_Terminate)
 _check(_lib.Pa_Terminate(), "Error terminating PortAudio")

def _ignore_stderr():
 """Try to forward PortAudio messages from stderr to /dev/null."""
 ffi = _FFI()
 ffi.cdef("""
 /* from stdio.h */
 FILE* fopen(const char* path, const char* mode);
 int fclose(FILE* fp);
 FILE* stderr; /* GNU C library */
 FILE* __stderrp; /* Mac OS X */
 """)
 try:
 stdio = ffi.dlopen(None)
 devnull = stdio.fopen(_os.devnull.encode(), b'w')
 except OSError:
 return
 try:
 stdio.stderr = devnull
 except KeyError:
 try:
 stdio.__stderrp = devnull
 except KeyError:
 stdio.fclose(devnull)

_ignore_stderr()
_initialize()

if __name__ == '__main__':
 print(query_devices())

 © Copyright 2016, Matthias Geier.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		python-sounddevice, version 0.3.3 »

 All modules for which code is available

		sounddevice

 © Copyright 2016, Matthias Geier.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

