

Play and Record Sound with Python

This Python [https://www.python.org/] module provides bindings for the PortAudio [http://www.portaudio.com/] library and a few
convenience functions to play and record NumPy [https://numpy.org/] arrays containing audio signals.

	Documentation:

	https://python-sounddevice.readthedocs.io/

	Source code repository and issue tracker:

	https://github.com/spatialaudio/python-sounddevice/

	License:

	MIT – see the file LICENSE for details.

	Installation

	Usage
	Playback

	Recording

	Simultaneous Playback and Recording

	Device Selection

	Callback Streams

	Blocking Read/Write Streams

	Example Programs
	Play a Sound File

	Play a Very Long Sound File

	Play a Sine Signal

	Input to Output Pass-Through

	Plot Microphone Signal(s) in Real-Time

	Real-Time Text-Mode Spectrogram

	Recording with Arbitrary Duration

	Using a stream in an asyncio coroutine

	Creating an asyncio generator for audio blocks

	Contributing

	API Documentation

	Version History

Index

Installation

First of all, you’ll need Python [https://www.python.org/].
Any version where CFFI [https://cffi.readthedocs.io/] is supported should work.
If you don’t have Python installed yet, you should get one of the
distributions which already include CFFI and NumPy [https://numpy.org/] (and many other useful
things), e.g. Anaconda [https://www.anaconda.com/distribution/#download-section] or WinPython [https://winpython.github.io/].

[image: _images/version.svg]
 [https://anaconda.org/conda-forge/python-sounddevice]If you are using the conda package manager (e.g. with Anaconda [https://www.anaconda.com/distribution/#download-section] for
Linux/macOS/Windows), you can install the sounddevice module from the
conda-forge channel:

conda install -c conda-forge python-sounddevice

Note

The PortAudio package on conda-forge doesn’t have ASIO support,
see https://github.com/conda-forge/portaudio-feedstock/issues/9.

There are also packages for several other package managers:

[image: _images/python:sounddevice.svg]
 [https://repology.org/metapackage/python:sounddevice]If you are using Windows, you can alternatively install one of the packages
provided at https://www.lfd.uci.edu/~gohlke/pythonlibs/#sounddevice.
The PortAudio [http://www.portaudio.com/] library (with ASIO support) is included in the package and
you can get the rest of the dependencies on the same page.

Note that some of the aforementioned packages may be out-of-date.
You can always get the newest sounddevice release from PyPI [https://pypi.org/project/sounddevice/]
(using pip).
If you want to try the latest development version, have a look at the section
about Contributing.

[image: _images/sounddevice.svg]
 [https://pypi.org/project/sounddevice/]To install the latest release from PyPI, use:

python3 -m pip install sounddevice --user

If you want to install it system-wide for all users (assuming you have the
necessary rights), you can just drop the --user option.
If you have installed the module already, you can use the --upgrade flag to
get the newest release.

To un-install, use:

python3 -m pip uninstall sounddevice

If you install the sounddevice module with pip on macOS or Windows,
the PortAudio [http://www.portaudio.com/] library (with ASIO support on Windows) will be installed
automagically.
On other platforms, you might have to install PortAudio with your package
manager (the package might be called libportaudio2 or similar).

You might also have to install CFFI [https://cffi.readthedocs.io/] (from a package called python3-cffi or
similar).

NumPy [https://numpy.org/] is only needed if you want to play back and record NumPy arrays.
The classes sounddevice.RawStream, sounddevice.RawInputStream and
sounddevice.RawOutputStream use plain Python buffer objects and don’t need
NumPy at all.
If you need NumPy, you should install it with your package manager (from a
package named python3-numpy or similar) or use a Python distribution that
already includes NumPy (see above).
You can also install NumPy with pip, but depending on your platform, this
might require a compiler and several additional libraries.

Usage

First, import the module:

import sounddevice as sd

Playback

Assuming you have a NumPy array named myarray holding audio data with a
sampling frequency of fs (in the most cases this will be 44100 or 48000
frames per second), you can play it back with play():

sd.play(myarray, fs)

This function returns immediately but continues playing the audio signal in the
background. You can stop playback with stop():

sd.stop()

If you want to block the Python interpreter until playback is finished,
you can use wait():

sd.wait()

If you know that you will use the same sampling frequency for a while, you can
set it as default using default.samplerate:

sd.default.samplerate = fs

After that, you can drop the samplerate argument:

sd.play(myarray)

Note

If you don’t specify the correct sampling frequency,
the sound might be played back too slow or too fast!

Recording

To record audio data from your sound device into a NumPy array,
you can use rec():

duration = 10.5 # seconds
myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=2)

Again, for repeated use you can set defaults using default:

sd.default.samplerate = fs
sd.default.channels = 2

After that, you can drop the additional arguments:

myrecording = sd.rec(int(duration * fs))

This function also returns immediately but continues recording in the background.
In the meantime, you can run other commands.
If you want to check if the recording is finished, you should use wait():

sd.wait()

If the recording was already finished, this returns immediately;
if not, it waits and returns as soon as the recording is finished.

By default, the recorded array has the data type 'float32'
(see default.dtype), but this can be changed with the dtype argument:

myrecording = sd.rec(int(duration * fs), dtype='float64')

Simultaneous Playback and Recording

To play back an array and record at the same time, you can use playrec():

myrecording = sd.playrec(myarray, fs, channels=2)

The number of output channels is obtained from myarray,
but the number of input channels still has to be specified.

Again, default values can be used:

sd.default.samplerate = fs
sd.default.channels = 2
myrecording = sd.playrec(myarray)

In this case the number of output channels is still taken from myarray
(which may or may not have 2 channels),
but the number of input channels is taken from default.channels.

Device Selection

In many cases, the default input/output device(s) will be the one(s) you want,
but it is of course possible to choose a different device.
Use query_devices() to get a list of supported devices.
The same list can be obtained from a terminal by typing the command

python3 -m sounddevice

You can use the corresponding device ID to select a desired device by assigning
to default.device or by passing it as device argument to
play(), Stream() etc.

Instead of the numerical device ID, you can also use a space-separated list of
case-insensitive substrings of the device name
(and the host API name, if needed).
See default.device for details.

import sounddevice as sd
sd.default.samplerate = 44100
sd.default.device = 'digital output'
sd.play(myarray)

Callback Streams

The aforementioned convenience functions play(), rec() and playrec()
(as well as the related functions wait(), stop(), get_status() and
get_stream()) are designed for small scripts and interactive use
(e.g. in a Jupyter [https://jupyter.org/] notebook).
They are supposed to be simple and convenient,
but their use cases are quite limited.

If you need more control (e.g. continuous recording, realtime processing, …),
you should use the lower-level “stream” classes
(e.g. Stream, InputStream, RawInputStream),
either with the “non-blocking” callback interface or with the “blocking”
Stream.read() and Stream.write() methods, see Blocking Read/Write Streams.

As an example for the “non-blocking” interface,
the following code creates a Stream with a callback function
that obtains audio data from the input channels
and simply forwards everything to the output channels
(be careful with the output volume, because this might cause acoustic feedback
if your microphone is close to your loudspeakers):

import sounddevice as sd
duration = 5.5 # seconds

def callback(indata, outdata, frames, time, status):
 if status:
 print(status)
 outdata[:] = indata

with sd.Stream(channels=2, callback=callback):
 sd.sleep(int(duration * 1000))

The same thing can be done with RawStream
(NumPy [https://numpy.org/] doesn’t have to be installed):

import sounddevice as sd
duration = 5.5 # seconds

def callback(indata, outdata, frames, time, status):
 if status:
 print(status)
 outdata[:] = indata

with sd.RawStream(channels=2, dtype='int24', callback=callback):
 sd.sleep(int(duration * 1000))

Note

We are using 24-bit samples here for no particular reason
(just because we can).

You can of course extend the callback functions
to do arbitrarily more complicated stuff.
You can also use streams without inputs (e.g. OutputStream)
or streams without outputs (e.g. InputStream).

See Example Programs for more examples.

Blocking Read/Write Streams

Instead of using a callback function,
you can also use the “blocking” methods Stream.read() and Stream.write()
(and of course the corresponding methods in InputStream, OutputStream,
RawStream, RawInputStream and RawOutputStream).

Example Programs

Most of these examples use the argparse [https://docs.python.org/3/library/argparse.html#module-argparse] module to handle command line
arguments.
To show a help text explaining all available arguments,
use the --help argument.

For example:

python3 play_file.py --help

Play a Sound File

play_file.py

#!/usr/bin/env python3
"""Load an audio file into memory and play its contents.

NumPy and the soundfile module (https://PySoundFile.readthedocs.io/)
must be installed for this to work.

This example program loads the whole file into memory before starting
playback.
To play very long files, you should use play_long_file.py instead.

"""
import argparse

import sounddevice as sd
import soundfile as sf

def int_or_str(text):
 """Helper function for argument parsing."""
 try:
 return int(text)
 except ValueError:
 return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
 '-l', '--list-devices', action='store_true',
 help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
 print(sd.query_devices())
 parser.exit(0)
parser = argparse.ArgumentParser(
 description=__doc__,
 formatter_class=argparse.RawDescriptionHelpFormatter,
 parents=[parser])
parser.add_argument(
 'filename', metavar='FILENAME',
 help='audio file to be played back')
parser.add_argument(
 '-d', '--device', type=int_or_str,
 help='output device (numeric ID or substring)')
args = parser.parse_args(remaining)

try:
 data, fs = sf.read(args.filename, dtype='float32')
 sd.play(data, fs, device=args.device)
 status = sd.wait()
except KeyboardInterrupt:
 parser.exit('\nInterrupted by user')
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))
if status:
 parser.exit('Error during playback: ' + str(status))

Play a Very Long Sound File

play_long_file.py

#!/usr/bin/env python3
"""Play an audio file using a limited amount of memory.

The soundfile module (https://PySoundFile.readthedocs.io/) must be
installed for this to work. NumPy is not needed.

In contrast to play_file.py, which loads the whole file into memory
before starting playback, this example program only holds a given number
of audio blocks in memory and is therefore able to play files that are
larger than the available RAM.

A similar example could of course be implemented using NumPy,
but this example shows what can be done when NumPy is not available.

"""
import argparse
import queue
import sys
import threading

import sounddevice as sd
import soundfile as sf

def int_or_str(text):
 """Helper function for argument parsing."""
 try:
 return int(text)
 except ValueError:
 return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
 '-l', '--list-devices', action='store_true',
 help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
 print(sd.query_devices())
 parser.exit(0)
parser = argparse.ArgumentParser(
 description=__doc__,
 formatter_class=argparse.RawDescriptionHelpFormatter,
 parents=[parser])
parser.add_argument(
 'filename', metavar='FILENAME',
 help='audio file to be played back')
parser.add_argument(
 '-d', '--device', type=int_or_str,
 help='output device (numeric ID or substring)')
parser.add_argument(
 '-b', '--blocksize', type=int, default=2048,
 help='block size (default: %(default)s)')
parser.add_argument(
 '-q', '--buffersize', type=int, default=20,
 help='number of blocks used for buffering (default: %(default)s)')
args = parser.parse_args(remaining)
if args.blocksize == 0:
 parser.error('blocksize must not be zero')
if args.buffersize < 1:
 parser.error('buffersize must be at least 1')

q = queue.Queue(maxsize=args.buffersize)
event = threading.Event()

def callback(outdata, frames, time, status):
 assert frames == args.blocksize
 if status.output_underflow:
 print('Output underflow: increase blocksize?', file=sys.stderr)
 raise sd.CallbackAbort
 assert not status
 try:
 data = q.get_nowait()
 except queue.Empty:
 print('Buffer is empty: increase buffersize?', file=sys.stderr)
 raise sd.CallbackAbort
 if len(data) < len(outdata):
 outdata[:len(data)] = data
 outdata[len(data):] = b'\x00' * (len(outdata) - len(data))
 raise sd.CallbackStop
 else:
 outdata[:] = data

try:
 with sf.SoundFile(args.filename) as f:
 for _ in range(args.buffersize):
 data = f.buffer_read(args.blocksize, dtype='float32')
 if not data:
 break
 q.put_nowait(data) # Pre-fill queue
 stream = sd.RawOutputStream(
 samplerate=f.samplerate, blocksize=args.blocksize,
 device=args.device, channels=f.channels, dtype='float32',
 callback=callback, finished_callback=event.set)
 with stream:
 timeout = args.blocksize * args.buffersize / f.samplerate
 while data:
 data = f.buffer_read(args.blocksize, dtype='float32')
 q.put(data, timeout=timeout)
 event.wait() # Wait until playback is finished
except KeyboardInterrupt:
 parser.exit('\nInterrupted by user')
except queue.Full:
 # A timeout occurred, i.e. there was an error in the callback
 parser.exit(1)
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Play a Sine Signal

play_sine.py

#!/usr/bin/env python3
"""Play a sine signal."""
import argparse
import sys

import numpy as np
import sounddevice as sd

def int_or_str(text):
 """Helper function for argument parsing."""
 try:
 return int(text)
 except ValueError:
 return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
 '-l', '--list-devices', action='store_true',
 help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
 print(sd.query_devices())
 parser.exit(0)
parser = argparse.ArgumentParser(
 description=__doc__,
 formatter_class=argparse.RawDescriptionHelpFormatter,
 parents=[parser])
parser.add_argument(
 'frequency', nargs='?', metavar='FREQUENCY', type=float, default=500,
 help='frequency in Hz (default: %(default)s)')
parser.add_argument(
 '-d', '--device', type=int_or_str,
 help='output device (numeric ID or substring)')
parser.add_argument(
 '-a', '--amplitude', type=float, default=0.2,
 help='amplitude (default: %(default)s)')
args = parser.parse_args(remaining)

start_idx = 0

try:
 samplerate = sd.query_devices(args.device, 'output')['default_samplerate']

 def callback(outdata, frames, time, status):
 if status:
 print(status, file=sys.stderr)
 global start_idx
 t = (start_idx + np.arange(frames)) / samplerate
 t = t.reshape(-1, 1)
 outdata[:] = args.amplitude * np.sin(2 * np.pi * args.frequency * t)
 start_idx += frames

 with sd.OutputStream(device=args.device, channels=1, callback=callback,
 samplerate=samplerate):
 print('#' * 80)
 print('press Return to quit')
 print('#' * 80)
 input()
except KeyboardInterrupt:
 parser.exit('')
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Input to Output Pass-Through

wire.py

#!/usr/bin/env python3
"""Pass input directly to output.

https://app.assembla.com/spaces/portaudio/git/source/master/test/patest_wire.c

"""
import argparse

import sounddevice as sd
import numpy # Make sure NumPy is loaded before it is used in the callback
assert numpy # avoid "imported but unused" message (W0611)

def int_or_str(text):
 """Helper function for argument parsing."""
 try:
 return int(text)
 except ValueError:
 return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
 '-l', '--list-devices', action='store_true',
 help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
 print(sd.query_devices())
 parser.exit(0)
parser = argparse.ArgumentParser(
 description=__doc__,
 formatter_class=argparse.RawDescriptionHelpFormatter,
 parents=[parser])
parser.add_argument(
 '-i', '--input-device', type=int_or_str,
 help='input device (numeric ID or substring)')
parser.add_argument(
 '-o', '--output-device', type=int_or_str,
 help='output device (numeric ID or substring)')
parser.add_argument(
 '-c', '--channels', type=int, default=2,
 help='number of channels')
parser.add_argument('--dtype', help='audio data type')
parser.add_argument('--samplerate', type=float, help='sampling rate')
parser.add_argument('--blocksize', type=int, help='block size')
parser.add_argument('--latency', type=float, help='latency in seconds')
args = parser.parse_args(remaining)

def callback(indata, outdata, frames, time, status):
 if status:
 print(status)
 outdata[:] = indata

try:
 with sd.Stream(device=(args.input_device, args.output_device),
 samplerate=args.samplerate, blocksize=args.blocksize,
 dtype=args.dtype, latency=args.latency,
 channels=args.channels, callback=callback):
 print('#' * 80)
 print('press Return to quit')
 print('#' * 80)
 input()
except KeyboardInterrupt:
 parser.exit('')
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Plot Microphone Signal(s) in Real-Time

plot_input.py

#!/usr/bin/env python3
"""Plot the live microphone signal(s) with matplotlib.

Matplotlib and NumPy have to be installed.

"""
import argparse
import queue
import sys

from matplotlib.animation import FuncAnimation
import matplotlib.pyplot as plt
import numpy as np
import sounddevice as sd

def int_or_str(text):
 """Helper function for argument parsing."""
 try:
 return int(text)
 except ValueError:
 return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
 '-l', '--list-devices', action='store_true',
 help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
 print(sd.query_devices())
 parser.exit(0)
parser = argparse.ArgumentParser(
 description=__doc__,
 formatter_class=argparse.RawDescriptionHelpFormatter,
 parents=[parser])
parser.add_argument(
 'channels', type=int, default=[1], nargs='*', metavar='CHANNEL',
 help='input channels to plot (default: the first)')
parser.add_argument(
 '-d', '--device', type=int_or_str,
 help='input device (numeric ID or substring)')
parser.add_argument(
 '-w', '--window', type=float, default=200, metavar='DURATION',
 help='visible time slot (default: %(default)s ms)')
parser.add_argument(
 '-i', '--interval', type=float, default=30,
 help='minimum time between plot updates (default: %(default)s ms)')
parser.add_argument(
 '-b', '--blocksize', type=int, help='block size (in samples)')
parser.add_argument(
 '-r', '--samplerate', type=float, help='sampling rate of audio device')
parser.add_argument(
 '-n', '--downsample', type=int, default=10, metavar='N',
 help='display every Nth sample (default: %(default)s)')
args = parser.parse_args(remaining)
if any(c < 1 for c in args.channels):
 parser.error('argument CHANNEL: must be >= 1')
mapping = [c - 1 for c in args.channels] # Channel numbers start with 1
q = queue.Queue()

def audio_callback(indata, frames, time, status):
 """This is called (from a separate thread) for each audio block."""
 if status:
 print(status, file=sys.stderr)
 # Fancy indexing with mapping creates a (necessary!) copy:
 q.put(indata[::args.downsample, mapping])

def update_plot(frame):
 """This is called by matplotlib for each plot update.

 Typically, audio callbacks happen more frequently than plot updates,
 therefore the queue tends to contain multiple blocks of audio data.

 """
 global plotdata
 while True:
 try:
 data = q.get_nowait()
 except queue.Empty:
 break
 shift = len(data)
 plotdata = np.roll(plotdata, -shift, axis=0)
 plotdata[-shift:, :] = data
 for column, line in enumerate(lines):
 line.set_ydata(plotdata[:, column])
 return lines

try:
 if args.samplerate is None:
 device_info = sd.query_devices(args.device, 'input')
 args.samplerate = device_info['default_samplerate']

 length = int(args.window * args.samplerate / (1000 * args.downsample))
 plotdata = np.zeros((length, len(args.channels)))

 fig, ax = plt.subplots()
 lines = ax.plot(plotdata)
 if len(args.channels) > 1:
 ax.legend(['channel {}'.format(c) for c in args.channels],
 loc='lower left', ncol=len(args.channels))
 ax.axis((0, len(plotdata), -1, 1))
 ax.set_yticks([0])
 ax.yaxis.grid(True)
 ax.tick_params(bottom=False, top=False, labelbottom=False,
 right=False, left=False, labelleft=False)
 fig.tight_layout(pad=0)

 stream = sd.InputStream(
 device=args.device, channels=max(args.channels),
 samplerate=args.samplerate, callback=audio_callback)
 ani = FuncAnimation(fig, update_plot, interval=args.interval, blit=True)
 with stream:
 plt.show()
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Real-Time Text-Mode Spectrogram

spectrogram.py

#!/usr/bin/env python3
"""Show a text-mode spectrogram using live microphone data."""
import argparse
import math
import shutil

import numpy as np
import sounddevice as sd

usage_line = ' press <enter> to quit, +<enter> or -<enter> to change scaling '

def int_or_str(text):
 """Helper function for argument parsing."""
 try:
 return int(text)
 except ValueError:
 return text

try:
 columns, _ = shutil.get_terminal_size()
except AttributeError:
 columns = 80

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
 '-l', '--list-devices', action='store_true',
 help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
 print(sd.query_devices())
 parser.exit(0)
parser = argparse.ArgumentParser(
 description=__doc__ + '\n\nSupported keys:' + usage_line,
 formatter_class=argparse.RawDescriptionHelpFormatter,
 parents=[parser])
parser.add_argument(
 '-b', '--block-duration', type=float, metavar='DURATION', default=50,
 help='block size (default %(default)s milliseconds)')
parser.add_argument(
 '-c', '--columns', type=int, default=columns,
 help='width of spectrogram')
parser.add_argument(
 '-d', '--device', type=int_or_str,
 help='input device (numeric ID or substring)')
parser.add_argument(
 '-g', '--gain', type=float, default=10,
 help='initial gain factor (default %(default)s)')
parser.add_argument(
 '-r', '--range', type=float, nargs=2,
 metavar=('LOW', 'HIGH'), default=[100, 2000],
 help='frequency range (default %(default)s Hz)')
args = parser.parse_args(remaining)
low, high = args.range
if high <= low:
 parser.error('HIGH must be greater than LOW')

Create a nice output gradient using ANSI escape sequences.
Stolen from https://gist.github.com/maurisvh/df919538bcef391bc89f
colors = 30, 34, 35, 91, 93, 97
chars = ' :%#\t#%:'
gradient = []
for bg, fg in zip(colors, colors[1:]):
 for char in chars:
 if char == '\t':
 bg, fg = fg, bg
 else:
 gradient.append('\x1b[{};{}m{}'.format(fg, bg + 10, char))

try:
 samplerate = sd.query_devices(args.device, 'input')['default_samplerate']

 delta_f = (high - low) / (args.columns - 1)
 fftsize = math.ceil(samplerate / delta_f)
 low_bin = math.floor(low / delta_f)

 def callback(indata, frames, time, status):
 if status:
 text = ' ' + str(status) + ' '
 print('\x1b[34;40m', text.center(args.columns, '#'),
 '\x1b[0m', sep='')
 if any(indata):
 magnitude = np.abs(np.fft.rfft(indata[:, 0], n=fftsize))
 magnitude *= args.gain / fftsize
 line = (gradient[int(np.clip(x, 0, 1) * (len(gradient) - 1))]
 for x in magnitude[low_bin:low_bin + args.columns])
 print(*line, sep='', end='\x1b[0m\n')
 else:
 print('no input')

 with sd.InputStream(device=args.device, channels=1, callback=callback,
 blocksize=int(samplerate * args.block_duration / 1000),
 samplerate=samplerate):
 while True:
 response = input()
 if response in ('', 'q', 'Q'):
 break
 for ch in response:
 if ch == '+':
 args.gain *= 2
 elif ch == '-':
 args.gain /= 2
 else:
 print('\x1b[31;40m', usage_line.center(args.columns, '#'),
 '\x1b[0m', sep='')
 break
except KeyboardInterrupt:
 parser.exit('Interrupted by user')
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Recording with Arbitrary Duration

rec_unlimited.py

#!/usr/bin/env python3
"""Create a recording with arbitrary duration.

The soundfile module (https://PySoundFile.readthedocs.io/) has to be installed!

"""
import argparse
import tempfile
import queue
import sys

import sounddevice as sd
import soundfile as sf
import numpy # Make sure NumPy is loaded before it is used in the callback
assert numpy # avoid "imported but unused" message (W0611)

def int_or_str(text):
 """Helper function for argument parsing."""
 try:
 return int(text)
 except ValueError:
 return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
 '-l', '--list-devices', action='store_true',
 help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
 print(sd.query_devices())
 parser.exit(0)
parser = argparse.ArgumentParser(
 description=__doc__,
 formatter_class=argparse.RawDescriptionHelpFormatter,
 parents=[parser])
parser.add_argument(
 'filename', nargs='?', metavar='FILENAME',
 help='audio file to store recording to')
parser.add_argument(
 '-d', '--device', type=int_or_str,
 help='input device (numeric ID or substring)')
parser.add_argument(
 '-r', '--samplerate', type=int, help='sampling rate')
parser.add_argument(
 '-c', '--channels', type=int, default=1, help='number of input channels')
parser.add_argument(
 '-t', '--subtype', type=str, help='sound file subtype (e.g. "PCM_24")')
args = parser.parse_args(remaining)

q = queue.Queue()

def callback(indata, frames, time, status):
 """This is called (from a separate thread) for each audio block."""
 if status:
 print(status, file=sys.stderr)
 q.put(indata.copy())

try:
 if args.samplerate is None:
 device_info = sd.query_devices(args.device, 'input')
 # soundfile expects an int, sounddevice provides a float:
 args.samplerate = int(device_info['default_samplerate'])
 if args.filename is None:
 args.filename = tempfile.mktemp(prefix='delme_rec_unlimited_',
 suffix='.wav', dir='')

 # Make sure the file is opened before recording anything:
 with sf.SoundFile(args.filename, mode='x', samplerate=args.samplerate,
 channels=args.channels, subtype=args.subtype) as file:
 with sd.InputStream(samplerate=args.samplerate, device=args.device,
 channels=args.channels, callback=callback):
 print('#' * 80)
 print('press Ctrl+C to stop the recording')
 print('#' * 80)
 while True:
 file.write(q.get())
except KeyboardInterrupt:
 print('\nRecording finished: ' + repr(args.filename))
 parser.exit(0)
except Exception as e:
 parser.exit(type(e).__name__ + ': ' + str(e))

Using a stream in an asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] coroutine

asyncio_coroutines.py

#!/usr/bin/env python3
"""An example for using a stream in an asyncio coroutine.

This example shows how to create a stream in a coroutine and how to wait for
the completion of the stream.

You need Python 3.7 or newer to run this.

"""
import asyncio
import sys

import numpy as np
import sounddevice as sd

async def record_buffer(buffer, **kwargs):
 loop = asyncio.get_event_loop()
 event = asyncio.Event()
 idx = 0

 def callback(indata, frame_count, time_info, status):
 nonlocal idx
 if status:
 print(status)
 remainder = len(buffer) - idx
 if remainder == 0:
 loop.call_soon_threadsafe(event.set)
 raise sd.CallbackStop
 indata = indata[:remainder]
 buffer[idx:idx + len(indata)] = indata
 idx += len(indata)

 stream = sd.InputStream(callback=callback, dtype=buffer.dtype,
 channels=buffer.shape[1], **kwargs)
 with stream:
 await event.wait()

async def play_buffer(buffer, **kwargs):
 loop = asyncio.get_event_loop()
 event = asyncio.Event()
 idx = 0

 def callback(outdata, frame_count, time_info, status):
 nonlocal idx
 if status:
 print(status)
 remainder = len(buffer) - idx
 if remainder == 0:
 loop.call_soon_threadsafe(event.set)
 raise sd.CallbackStop
 valid_frames = frame_count if remainder >= frame_count else remainder
 outdata[:valid_frames] = buffer[idx:idx + valid_frames]
 outdata[valid_frames:] = 0
 idx += valid_frames

 stream = sd.OutputStream(callback=callback, dtype=buffer.dtype,
 channels=buffer.shape[1], **kwargs)
 with stream:
 await event.wait()

async def main(frames=150_000, channels=1, dtype='float32', **kwargs):
 buffer = np.empty((frames, channels), dtype=dtype)
 print('recording buffer ...')
 await record_buffer(buffer, **kwargs)
 print('playing buffer ...')
 await play_buffer(buffer, **kwargs)
 print('done')

if __name__ == "__main__":
 try:
 asyncio.run(main())
 except KeyboardInterrupt:
 sys.exit('\nInterrupted by user')

Creating an asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] generator for audio blocks

asyncio_generators.py

#!/usr/bin/env python3
"""Creating an asyncio generator for blocks of audio data.

This example shows how a generator can be used to analyze audio input blocks.
In addition, it shows how a generator can be created that yields not only input
blocks but also output blocks where audio data can be written to.

You need Python 3.7 or newer to run this.

"""
import asyncio
import queue
import sys

import numpy as np
import sounddevice as sd

async def inputstream_generator(channels=1, **kwargs):
 """Generator that yields blocks of input data as NumPy arrays."""
 q_in = asyncio.Queue()
 loop = asyncio.get_event_loop()

 def callback(indata, frame_count, time_info, status):
 loop.call_soon_threadsafe(q_in.put_nowait, (indata.copy(), status))

 stream = sd.InputStream(callback=callback, channels=channels, **kwargs)
 with stream:
 while True:
 indata, status = await q_in.get()
 yield indata, status

async def stream_generator(blocksize, *, channels=1, dtype='float32',
 pre_fill_blocks=10, **kwargs):
 """Generator that yields blocks of input/output data as NumPy arrays.

 The output blocks are uninitialized and have to be filled with
 appropriate audio signals.

 """
 assert blocksize != 0
 q_in = asyncio.Queue()
 q_out = queue.Queue()
 loop = asyncio.get_event_loop()

 def callback(indata, outdata, frame_count, time_info, status):
 loop.call_soon_threadsafe(q_in.put_nowait, (indata.copy(), status))
 outdata[:] = q_out.get_nowait()

 # pre-fill output queue
 for _ in range(pre_fill_blocks):
 q_out.put(np.zeros((blocksize, channels), dtype=dtype))

 stream = sd.Stream(blocksize=blocksize, callback=callback, dtype=dtype,
 channels=channels, **kwargs)
 with stream:
 while True:
 indata, status = await q_in.get()
 outdata = np.empty((blocksize, channels), dtype=dtype)
 yield indata, outdata, status
 q_out.put_nowait(outdata)

async def print_input_infos(**kwargs):
 """Show minimum and maximum value of each incoming audio block."""
 async for indata, status in inputstream_generator(**kwargs):
 if status:
 print(status)
 print('min:', indata.min(), '\t', 'max:', indata.max())

async def wire_coro(**kwargs):
 """Create a connection between audio inputs and outputs.

 Asynchronously iterates over a stream generator and for each block
 simply copies the input data into the output block.

 """
 async for indata, outdata, status in stream_generator(**kwargs):
 if status:
 print(status)
 outdata[:] = indata

async def main(**kwargs):
 print('Some informations about the input signal:')
 try:
 await asyncio.wait_for(print_input_infos(), timeout=2)
 except asyncio.TimeoutError:
 pass
 print('\nEnough of that, activating wire ...\n')
 audio_task = asyncio.create_task(wire_coro(**kwargs))
 for i in range(10, 0, -1):
 print(i)
 await asyncio.sleep(1)
 audio_task.cancel()
 try:
 await audio_task
 except asyncio.CancelledError:
 print('\nwire was cancelled')

if __name__ == "__main__":
 try:
 asyncio.run(main(blocksize=1024))
 except KeyboardInterrupt:
 sys.exit('\nInterrupted by user')

Contributing

If you find bugs, errors, omissions or other things that need improvement,
please create an issue or a pull request at
https://github.com/spatialaudio/python-sounddevice/.
Contributions are always welcome!

Instead of pip-installing the latest release from PyPI [https://pypi.org/project/sounddevice/], you should get the
newest development version from Github [https://github.com/spatialaudio/python-sounddevice/]:

git clone --recursive https://github.com/spatialaudio/python-sounddevice.git
cd python-sounddevice
python3 setup.py develop --user

This way, your installation always stays up-to-date, even if you pull new
changes from the Github repository.

If you prefer, you can also replace the last command with:

python3 -m pip install --user -e .

… where -e stands for --editable.

Whenever the file sounddevice_build.py changes (either because you edited it
or it was updated by pulling from Github or switching branches), you have to run
the last command again.

If you used the --recursive option when cloning, the dynamic libraries for
macOS and Windows should already be available.
If not, you can get the submodule with:

git submodule update --init

If you make changes to the documentation, you can locally re-create the HTML
pages using Sphinx [http://sphinx-doc.org/].
You can install it and a few other necessary packages with:

python3 -m pip install -r doc/requirements.txt --user

To create the HTML pages, use:

python3 setup.py build_sphinx

The generated files will be available in the directory build/sphinx/html/.

API Documentation

Play and Record Sound with Python.

	API overview:

	
	Convenience functions to play and record NumPy arrays:
play(), rec(), playrec() and the related functions
wait(), stop(), get_status(), get_stream()

	Module-wide default settings: default

	PortAudio streams, using NumPy arrays:
Stream, InputStream, OutputStream

	PortAudio streams, using Python buffer objects (NumPy not needed):
RawStream, RawInputStream, RawOutputStream

	Functions to get information about the available hardware:
query_devices(), query_hostapis(),
check_input_settings(), check_output_settings()

	Miscellaneous functions and classes:
sleep(), get_portaudio_version(), CallbackFlags,
CallbackStop, CallbackAbort

	Platform-specific settings:
AsioSettings, CoreAudioSettings, WasapiSettings

	Online documentation:

	https://python-sounddevice.readthedocs.io/

	
sounddevice.play(data, samplerate=None, mapping=None, blocking=False, loop=False, **kwargs)

	Play back a NumPy array containing audio data.

This is a convenience function for interactive use and for small
scripts. It cannot be used for multiple overlapping playbacks.

This function does the following steps internally:

	Call stop() to terminate any currently running invocation
of play(), rec() and playrec().

	Create an OutputStream and a callback function for taking care
of the actual playback.

	Start the stream.

	If blocking=True was given, wait until playback is done.
If not, return immediately.

If you need more control (e.g. block-wise gapless playback, multiple
overlapping playbacks, …), you should explicitly create an
OutputStream yourself.
If NumPy is not available, you can use a RawOutputStream.

	Parameters

	
	data (array_like) – Audio data to be played back. The columns of a two-dimensional
array are interpreted as channels, one-dimensional arrays are
treated as mono data.
The data types float64, float32, int32, int16, int8
and uint8 can be used.
float64 data is simply converted to float32 before passing
it to PortAudio, because it’s not supported natively.

	mapping (array_like, optional) – List of channel numbers (starting with 1) where the columns of
data shall be played back on. Must have the same length as
number of channels in data (except if data is mono, in which
case the signal is played back on all given output channels).
Each channel number may only appear once in mapping.

	blocking (bool, optional) – If False (the default), return immediately (but playback
continues in the background), if True, wait until playback
is finished. A non-blocking invocation can be stopped with
stop() or turned into a blocking one with wait().

	loop (bool, optional) – Play data in a loop.

	Other Parameters

	samplerate, **kwargs – All parameters of OutputStream – except channels, dtype,
callback and finished_callback – can be used.

Notes

If you don’t specify the correct sampling rate
(either with the samplerate argument or by assigning a value to
default.samplerate), the audio data will be played back,
but it might be too slow or too fast!

See also

rec(), playrec()

	
sounddevice.rec(frames=None, samplerate=None, channels=None, dtype=None, out=None, mapping=None, blocking=False, **kwargs)

	Record audio data into a NumPy array.

This is a convenience function for interactive use and for small
scripts.

This function does the following steps internally:

	Call stop() to terminate any currently running invocation
of play(), rec() and playrec().

	Create an InputStream and a callback function for taking care
of the actual recording.

	Start the stream.

	If blocking=True was given, wait until recording is done.
If not, return immediately.

If you need more control (e.g. block-wise gapless recording,
overlapping recordings, …), you should explicitly create an
InputStream yourself.
If NumPy is not available, you can use a RawInputStream.

	Parameters

	
	frames (int, sometimes optional) – Number of frames to record. Not needed if out is given.

	channels (int, optional) – Number of channels to record. Not needed if mapping or out
is given. The default value can be changed with
default.channels.

	dtype (str or numpy.dtype, optional) – Data type of the recording. Not needed if out is given.
The data types float64, float32, int32, int16, int8
and uint8 can be used. For dtype='float64', audio data is
recorded in float32 format and converted afterwards, because
it’s not natively supported by PortAudio. The default value can
be changed with default.dtype.

	mapping (array_like, optional) – List of channel numbers (starting with 1) to record.
If mapping is given, channels is silently ignored.

	blocking (bool, optional) – If False (the default), return immediately (but recording
continues in the background), if True, wait until recording
is finished.
A non-blocking invocation can be stopped with stop() or turned
into a blocking one with wait().

	Returns

	numpy.ndarray or type(out) – The recorded data.

Note

By default (blocking=False), an array of data is
returned which is still being written to while recording!
The returned data is only valid once recording has stopped.
Use wait() to make sure the recording is finished.

	Other Parameters

	
	out (numpy.ndarray or subclass, optional) – If out is specified, the recorded data is written into the
given array instead of creating a new array.
In this case, the arguments frames, channels and dtype are
silently ignored!
If mapping is given, its length must match the number of
channels in out.

	samplerate, **kwargs – All parameters of InputStream – except callback and
finished_callback – can be used.

Notes

If you don’t specify a sampling rate (either with the samplerate
argument or by assigning a value to default.samplerate),
the default sampling rate of the sound device will be used
(see query_devices()).

See also

play(), playrec()

	
sounddevice.playrec(data, samplerate=None, channels=None, dtype=None, out=None, input_mapping=None, output_mapping=None, blocking=False, **kwargs)

	Simultaneous playback and recording of NumPy arrays.

This function does the following steps internally:

	Call stop() to terminate any currently running invocation
of play(), rec() and playrec().

	Create a Stream and a callback function for taking care of the
actual playback and recording.

	Start the stream.

	If blocking=True was given, wait until playback/recording is
done. If not, return immediately.

If you need more control (e.g. block-wise gapless playback and
recording, realtime processing, …),
you should explicitly create a Stream yourself.
If NumPy is not available, you can use a RawStream.

	Parameters

	
	data (array_like) – Audio data to be played back. See play().

	channels (int, sometimes optional) – Number of input channels, see rec().
The number of output channels is obtained from data.shape.

	dtype (str or numpy.dtype, optional) – Input data type, see rec().
If dtype is not specified, it is taken from data.dtype
(i.e. default.dtype is ignored).
The output data type is obtained from data.dtype anyway.

	input_mapping, output_mapping (array_like, optional) – See the parameter mapping of rec() and play(),
respectively.

	blocking (bool, optional) – If False (the default), return immediately (but continue
playback/recording in the background), if True, wait until
playback/recording is finished.
A non-blocking invocation can be stopped with stop() or turned
into a blocking one with wait().

	Returns

	numpy.ndarray or type(out) – The recorded data. See rec().

	Other Parameters

	
	out (numpy.ndarray or subclass, optional) – See rec().

	samplerate, **kwargs – All parameters of Stream – except channels, dtype,
callback and finished_callback – can be used.

Notes

If you don’t specify the correct sampling rate
(either with the samplerate argument or by assigning a value to
default.samplerate), the audio data will be played back,
but it might be too slow or too fast!

See also

play(), rec()

	
sounddevice.wait(ignore_errors=True)

	Wait for play()/rec()/playrec() to be finished.

Playback/recording can be stopped with a KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt].

	Returns

	CallbackFlags or None – If at least one buffer over-/underrun happened during the last
playback/recording, a CallbackFlags object is returned.

See also

get_status()

	
sounddevice.stop(ignore_errors=True)

	Stop playback/recording.

This only stops play(), rec() and playrec(), but has no
influence on streams created with Stream, InputStream,
OutputStream, RawStream, RawInputStream, RawOutputStream.

	
sounddevice.get_status()

	Get info about over-/underflows in play()/rec()/playrec().

	Returns

	CallbackFlags – A CallbackFlags object that holds information about the last
invocation of play(), rec() or playrec().

See also

wait()

	
sounddevice.get_stream()

	Get a reference to the current stream.

This applies only to streams created by calls to play(), rec()
or playrec().

	Returns

	Stream – An OutputStream, InputStream or Stream associated with
the last invocation of play(), rec() or playrec(),
respectively.

	
sounddevice.query_devices(device=None, kind=None)

	Return information about available devices.

Information and capabilities of PortAudio devices.
Devices may support input, output or both input and output.

To find the default input/output device(s), use default.device.

	Parameters

	
	device (int or str, optional) – Numeric device ID or device name substring(s).
If specified, information about only the given device is
returned in a single dictionary.

	kind ({‘input’, ‘output’}, optional) – If device is not specified and kind is 'input' or
'output', a single dictionary is returned with information
about the default input or output device, respectively.

	Returns

	dict or DeviceList – A dictionary with information about the given device or – if
no arguments were specified – a DeviceList containing one
dictionary for each available device.
The dictionaries have the following keys:

	'name'

	The name of the device.

	'hostapi'

	The ID of the corresponding host API. Use
query_hostapis() to get information about a host API.

	'max_input_channels', 'max_output_channels'

	The maximum number of input/output channels supported by the
device. See default.channels.

	'default_low_input_latency', 'default_low_output_latency'

	Default latency values for interactive performance.
This is used if default.latency (or the latency argument
of playrec(), Stream etc.) is set to 'low'.

	'default_high_input_latency', 'default_high_output_latency'

	Default latency values for robust non-interactive
applications (e.g. playing sound files).
This is used if default.latency (or the latency argument
of playrec(), Stream etc.) is set to 'high'.

	'default_samplerate'

	The default sampling frequency of the device.
This is used if default.samplerate is not set.

Notes

The list of devices can also be displayed in a terminal:

python3 -m sounddevice

Examples

The returned DeviceList can be indexed and iterated over like any
sequence type (yielding the abovementioned dictionaries), but it
also has a special string representation which is shown when used in
an interactive Python session.

Each available device is listed on one line together with the
corresponding device ID, which can be assigned to default.device
or used as device argument in play(), Stream etc.

The first character of a line is > for the default input device,
< for the default output device and * for the default
input/output device. After the device ID and the device name, the
corresponding host API name is displayed. In the end of each line,
the maximum number of input and output channels is shown.

On a GNU/Linux computer it might look somewhat like this:

>>> import sounddevice as sd
>>> sd.query_devices()
 0 HDA Intel: ALC662 rev1 Analog (hw:0,0), ALSA (2 in, 2 out)
 1 HDA Intel: ALC662 rev1 Digital (hw:0,1), ALSA (0 in, 2 out)
 2 HDA Intel: HDMI 0 (hw:0,3), ALSA (0 in, 8 out)
 3 sysdefault, ALSA (128 in, 128 out)
 4 front, ALSA (0 in, 2 out)
 5 surround40, ALSA (0 in, 2 out)
 6 surround51, ALSA (0 in, 2 out)
 7 surround71, ALSA (0 in, 2 out)
 8 iec958, ALSA (0 in, 2 out)
 9 spdif, ALSA (0 in, 2 out)
 10 hdmi, ALSA (0 in, 8 out)
* 11 default, ALSA (128 in, 128 out)
 12 dmix, ALSA (0 in, 2 out)
 13 /dev/dsp, OSS (16 in, 16 out)

Note that ALSA provides access to some “real” and some “virtual”
devices. The latter sometimes have a ridiculously high number of
(virtual) inputs and outputs.

On macOS, you might get something similar to this:

>>> sd.query_devices()
 0 Built-in Line Input, Core Audio (2 in, 0 out)
> 1 Built-in Digital Input, Core Audio (2 in, 0 out)
< 2 Built-in Output, Core Audio (0 in, 2 out)
 3 Built-in Line Output, Core Audio (0 in, 2 out)
 4 Built-in Digital Output, Core Audio (0 in, 2 out)

	
sounddevice.query_hostapis(index=None)

	Return information about available host APIs.

	Parameters

	index (int, optional) – If specified, information about only the given host API index
is returned in a single dictionary.

	Returns

	dict or tuple of dict – A dictionary with information about the given host API index
or – if no index was specified – a tuple containing one
dictionary for each available host API.
The dictionaries have the following keys:

	'name'

	The name of the host API.

	'devices'

	A list of device IDs belonging to the host API.
Use query_devices() to get information about a device.

	'default_input_device', 'default_output_device'

	The device ID of the default input/output device of the host
API. If no default input/output device exists for the given
host API, this is -1.

Note

The overall default device(s) – which can be
overwritten by assigning to default.device – take(s)
precedence over default.hostapi and the information in
the abovementioned dictionaries.

See also

query_devices()

	
sounddevice.check_input_settings(device=None, channels=None, dtype=None, extra_settings=None, samplerate=None)

	Check if given input device settings are supported.

All parameters are optional, default settings are used for any
unspecified parameters. If the settings are supported, the function
does nothing; if not, an exception is raised.

	Parameters

	
	device (int or str, optional) – Device ID or device name substring(s), see default.device.

	channels (int, optional) – Number of input channels, see default.channels.

	dtype (str or numpy.dtype, optional) – Data type for input samples, see default.dtype.

	extra_settings (settings object, optional) – This can be used for host-API-specific input settings.
See default.extra_settings.

	samplerate (float, optional) – Sampling frequency, see default.samplerate.

	
sounddevice.check_output_settings(device=None, channels=None, dtype=None, extra_settings=None, samplerate=None)

	Check if given output device settings are supported.

Same as check_input_settings(), just for output device
settings.

	
sounddevice.sleep(msec)

	Put the caller to sleep for at least msec milliseconds.

The function may sleep longer than requested so don’t rely on this
for accurate musical timing.

	
sounddevice.get_portaudio_version()

	Get version information for the PortAudio library.

Returns the release number and a textual description of the current
PortAudio build, e.g.

(1899, 'PortAudio V19-devel (built Feb 15 2014 23:28:00)')

	
class sounddevice.default

	Get/set defaults for the sounddevice module.

The attributes device, channels, dtype, latency and
extra_settings accept single values which specify the given
property for both input and output. However, if the property
differs between input and output, pairs of values can be used, where
the first value specifies the input and the second value specifies
the output. All other attributes are always single values.

Examples

>>> import sounddevice as sd
>>> sd.default.samplerate = 48000
>>> sd.default.dtype
['float32', 'float32']

Different values for input and output:

>>> sd.default.channels = 1, 2

A single value sets both input and output at the same time:

>>> sd.default.device = 5
>>> sd.default.device
[5, 5]

An attribute can be set to the “factory default” by assigning
None:

>>> sd.default.samplerate = None
>>> sd.default.device = None, 4

Use reset() to reset all attributes:

>>> sd.default.reset()

	
device = (None, None)

	Index or query string of default input/output device.

If not overwritten, this is queried from PortAudio.

If a string is given, the device is selected which contains all
space-separated parts in the right order. Each device string
contains the name of the corresponding host API in the end.
The string comparison is case-insensitive.

See also

query_devices()

	
channels = (None, None)

	Number of input/output channels.

The maximum number of channels for a given device can be found out
with query_devices().

	
dtype = ('float32', 'float32')

	Data type used for input/output samples.

The types 'float32', 'int32', 'int16', 'int8' and
'uint8' can be used for all streams and functions.
Additionally, play(), rec() and playrec() support
'float64' (for convenience, data is merely converted from/to
'float32') and RawInputStream, RawOutputStream and
RawStream support 'int24' (packed 24 bit format, which is
not supported in NumPy!).

If NumPy is available, the corresponding numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] objects can
be used as well.

The floating point representations 'float32' and 'float64'
use +1.0 and -1.0 as the maximum and minimum values, respectively.
'uint8' is an unsigned 8 bit format where 128 is considered
“ground”.

	
latency = ('high', 'high')

	Suggested input/output latency in seconds.

The special values 'low' and 'high' can be used to select
the default low/high latency of the chosen device.
'high' is typically more robust (i.e. buffer under-/overflows
are less likely), but the latency may be too large for interactive
applications.

See also

query_devices()

	
extra_settings = (None, None)

	Host-API-specific input/output settings.

See also

AsioSettings, CoreAudioSettings, WasapiSettings

	
samplerate = None

	Sampling frequency in Hertz (= frames per second).

See also

query_devices()

	
blocksize = 0

	See the blocksize argument of Stream.

	
clip_off = False

	Disable clipping.

Set to True to disable default clipping of out of range samples.

	
dither_off = False

	Disable dithering.

Set to True to disable default dithering.

	
never_drop_input = False

	Set behavior for input overflow of full-duplex streams.

Set to True to request that where possible a full duplex stream
will not discard overflowed input samples without calling the stream
callback. This flag is only valid for full-duplex callback streams
(i.e. only Stream and RawStream and only if callback was
specified; this includes playrec()) and only when used in
combination with blocksize=0 (the default). Using this flag
incorrectly results in an error being raised. See also
http://www.portaudio.com/docs/proposals/001-UnderflowOverflowHandling.html.

	
prime_output_buffers_using_stream_callback = False

	How to fill initial output buffers.

Set to True to call the stream callback to fill initial output
buffers, rather than the default behavior of priming the buffers
with zeros (silence). This flag has no effect for input-only
(InputStream and RawInputStream) and blocking read/write streams
(i.e. if callback wasn’t specified). See also
http://www.portaudio.com/docs/proposals/020-AllowCallbackToPrimeStream.html.

	
hostapi

	Index of the default host API (read-only).

	
reset()

	Reset all attributes to their “factory default”.

	
class sounddevice.Stream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, extra_settings=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)

	Open a stream for simultaneous input and output.

To open an input-only or output-only stream use InputStream or
OutputStream, respectively. If you want to handle audio data
as plain buffer objects instead of NumPy arrays, use
RawStream, RawInputStream or RawOutputStream.

A single stream can provide multiple channels of real-time
streaming audio input and output to a client application. A
stream provides access to audio hardware represented by one or
more devices. Depending on the underlying host API, it may be
possible to open multiple streams using the same device, however
this behavior is implementation defined. Portable applications
should assume that a device may be simultaneously used by at
most one stream.

The arguments device, channels, dtype and latency can be
either single values (which will be used for both input and
output parameters) or pairs of values (where the first one is
the value for the input and the second one for the output).

All arguments are optional, the values for unspecified
parameters are taken from the default object.
If one of the values of a parameter pair is None, the
corresponding value from default will be used instead.

The created stream is inactive (see active, stopped).
It can be started with start().

Every stream object is also a
context manager [https://docs.python.org/3/reference/datamodel.html#context-managers], i.e. it can be
used in a with statement [https://docs.python.org/3/reference/compound_stmts.html#with] to automatically
call start() in the beginning of the statement and stop()
and close() on exit.

	Parameters

	
	samplerate (float, optional) – The desired sampling frequency (for both input and output).
The default value can be changed with default.samplerate.

	blocksize (int, optional) – The number of frames passed to the stream callback function,
or the preferred block granularity for a blocking read/write
stream.
The special value blocksize=0 (which is the default) may
be used to request that the stream callback will receive an
optimal (and possibly varying) number of frames based on
host requirements and the requested latency settings.
The default value can be changed with default.blocksize.

Note

With some host APIs, the use of non-zero
blocksize for a callback stream may introduce an
additional layer of buffering which could introduce
additional latency. PortAudio guarantees that the
additional latency will be kept to the theoretical
minimum however, it is strongly recommended that a
non-zero blocksize value only be used when your
algorithm requires a fixed number of frames per stream
callback.

	device (int or str or pair thereof, optional) – Device index(es) or query string(s) specifying the device(s)
to be used. The default value(s) can be changed with
default.device.

	channels (int or pair of int, optional) – The number of channels of sound to be delivered to the
stream callback or accessed by read() or write(). It
can range from 1 to the value of 'max_input_channels' or
'max_output_channels' in the dict returned by
query_devices(). By default, the maximum possible number
of channels for the selected device is used (which may not
be what you want; see query_devices()). The default
value(s) can be changed with default.channels.

	dtype (str or numpy.dtype or pair thereof, optional) – The sample format of the numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] provided to the
stream callback, read() or write().
It may be any of float32, int32, int16, int8,
uint8. See numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype].
The float64 data type is not supported, this is only
supported for convenience in play()/rec()/playrec().
The packed 24 bit format 'int24' is only supported in
the “raw” stream classes, see RawStream. The default
value(s) can be changed with default.dtype.

	latency (float or {‘low’, ‘high’} or pair thereof, optional) – The desired latency in seconds. The special values
'low' and 'high' (latter being the default) select
the default low and high latency, respectively (see
query_devices()). The default value(s) can be changed
with default.latency.
Where practical, implementations should configure their
latency based on this parameter, otherwise they may choose
the closest viable latency instead. Unless the suggested
latency is greater than the absolute upper limit for the
device, implementations should round the latency up to the
next practical value – i.e. to provide an equal or higher
latency wherever possible. Actual latency values for an
open stream may be retrieved using the latency attribute.

	extra_settings (settings object or pair thereof, optional) – This can be used for host-API-specific input/output
settings. See default.extra_settings.

	callback (callable, optional) – User-supplied function to consume, process or generate audio
data in response to requests from an active stream.
When a stream is running, PortAudio calls the stream
callback periodically. The callback function is responsible
for processing and filling input and output buffers,
respectively.

If no callback is given, the stream will be opened in
“blocking read/write” mode. In blocking mode, the client
can receive sample data using read() and write sample
data using write(), the number of frames that may be
read or written without blocking is returned by
read_available and write_available, respectively.

The callback must have this signature:

callback(indata: ndarray, outdata: ndarray, frames: int,
 time: CData, status: CallbackFlags) -> None

The first and second argument are the input and output
buffer, respectively, as two-dimensional numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
with one column per channel (i.e. with a shape of
(frames, channels)) and with a data type specified by
dtype.
The output buffer contains uninitialized data and the
callback is supposed to fill it with proper audio data.
If no data is available, the buffer should be filled with
zeros (e.g. by using outdata.fill(0)).

Note

In Python, assigning to an identifier merely
re-binds the identifier to another object, so this will
not work as expected:

outdata = my_data # Don't do this!

To actually assign data to the buffer itself, you can use
indexing, e.g.:

outdata[:] = my_data

… which fills the whole buffer, or:

outdata[:, 1] = my_channel_data

… which only fills one channel.

The third argument holds the number of frames to be
processed by the stream callback. This is the same as the
length of the input and output buffers.

The forth argument provides a CFFI structure with
timestamps indicating the ADC capture time of the first
sample in the input buffer (time.inputBufferAdcTime),
the DAC output time of the first sample in the output buffer
(time.outputBufferDacTime) and the time the callback was
invoked (time.currentTime).
These time values are expressed in seconds and are
synchronised with the time base used by time for the
associated stream.

The fifth argument is a CallbackFlags instance indicating
whether input and/or output buffers have been inserted or
will be dropped to overcome underflow or overflow
conditions.

If an exception is raised in the callback, it will not be
called again. If CallbackAbort is raised, the stream will
finish as soon as possible. If CallbackStop is raised,
the stream will continue until all buffers generated by the
callback have been played. This may be useful in
applications such as soundfile players where a specific
duration of output is required. If another exception is
raised, its traceback is printed to sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr].
Exceptions are not propagated to the main thread, i.e. the
main Python program keeps running as if nothing had
happened.

Note

The callback must always fill the entire output
buffer, no matter if or which exceptions are raised.

If no exception is raised in the callback, it
automatically continues to be called until stop(),
abort() or close() are used to stop the stream.

The PortAudio stream callback runs at very high or real-time
priority. It is required to consistently meet its time
deadlines. Do not allocate memory, access the file system,
call library functions or call other functions from the
stream callback that may block or take an unpredictable
amount of time to complete. With the exception of
cpu_load it is not permissible to call PortAudio API
functions from within the stream callback.

In order for a stream to maintain glitch-free operation the
callback must consume and return audio data faster than it
is recorded and/or played. PortAudio anticipates that each
callback invocation may execute for a duration approaching
the duration of frames audio frames at the stream’s
sampling frequency. It is reasonable to expect to be able
to utilise 70% or more of the available CPU time in the
PortAudio callback. However, due to buffer size adaption
and other factors, not all host APIs are able to guarantee
audio stability under heavy CPU load with arbitrary fixed
callback buffer sizes. When high callback CPU utilisation
is required the most robust behavior can be achieved by
using blocksize=0.

	finished_callback (callable, optional) – User-supplied function which will be called when the stream
becomes inactive (i.e. once a call to stop() will not
block).

A stream will become inactive after the stream callback
raises an exception or when stop() or abort() is called.
For a stream providing audio output, if the stream callback
raises CallbackStop, or stop() is called, the stream
finished callback will not be called until all generated
sample data has been played. The callback must have this
signature:

finished_callback() -> None

	clip_off (bool, optional) – See default.clip_off.

	dither_off (bool, optional) – See default.dither_off.

	never_drop_input (bool, optional) – See default.never_drop_input.

	prime_output_buffers_using_stream_callback (bool, optional) – See default.prime_output_buffers_using_stream_callback.

	
abort(ignore_errors=True)

	Terminate audio processing immediately.

This does not wait for pending buffers to complete.

See also

start(), stop()

	
active

	True when the stream is active, False otherwise.

A stream is active after a successful call to start(), until
it becomes inactive either as a result of a call to stop() or
abort(), or as a result of an exception raised in the stream
callback. In the latter case, the stream is considered inactive
after the last buffer has finished playing.

See also

stopped

	
blocksize

	Number of frames per block.

The special value 0 means that the blocksize can change between
blocks. See the blocksize argument of Stream.

	
channels

	The number of input/output channels.

	
close(ignore_errors=True)

	Close the stream.

If the audio stream is active any pending buffers are discarded
as if abort() had been called.

	
closed

	True after a call to close(), False otherwise.

	
cpu_load

	CPU usage information for the stream.

The “CPU Load” is a fraction of total CPU time consumed by a
callback stream’s audio processing routines including, but not
limited to the client supplied stream callback. This function
does not work with blocking read/write streams.

This may be used in the stream callback function or in the
application.
It provides a floating point value, typically between 0.0 and
1.0, where 1.0 indicates that the stream callback is consuming
the maximum number of CPU cycles possible to maintain real-time
operation. A value of 0.5 would imply that PortAudio and the
stream callback was consuming roughly 50% of the available CPU
time. The value may exceed 1.0. A value of 0.0 will always be
returned for a blocking read/write stream, or if an error
occurs.

	
device

	IDs of the input/output device.

	
dtype

	Data type of the audio samples.

See also

default.dtype, samplesize

	
latency

	The input/output latency of the stream in seconds.

This value provides the most accurate estimate of input/output
latency available to the implementation.
It may differ significantly from the latency value(s) passed
to Stream().

	
read(frames)

	Read samples from the stream into a NumPy array.

The function doesn’t return until all requested frames have
been read – this may involve waiting for the operating system
to supply the data (except if no more than read_available
frames were requested).

This is the same as RawStream.read(), except that it
returns a NumPy array instead of a plain Python buffer object.

	Parameters

	frames (int) – The number of frames to be read. This parameter is not
constrained to a specific range, however high performance
applications will want to match this parameter to the
blocksize parameter used when opening the stream.

	Returns

	
	data (numpy.ndarray) – A two-dimensional numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] with one column per
channel (i.e. with a shape of (frames, channels)) and
with a data type specified by dtype.

	overflowed (bool) – True if input data was discarded by PortAudio after the
previous call and before this call.

	
read_available

	The number of frames that can be read without waiting.

Returns a value representing the maximum number of frames that
can be read from the stream without blocking or busy waiting.

	
samplerate

	The sampling frequency in Hertz (= frames per second).

In cases where the hardware sampling frequency is inaccurate and
PortAudio is aware of it, the value of this field may be
different from the samplerate parameter passed to Stream().
If information about the actual hardware sampling frequency is
not available, this field will have the same value as the
samplerate parameter passed to Stream().

	
samplesize

	The size in bytes of a single sample.

See also

dtype

	
start()

	Commence audio processing.

See also

stop(), abort()

	
stop(ignore_errors=True)

	Terminate audio processing.

This waits until all pending audio buffers have been played
before it returns.

See also

start(), abort()

	
stopped

	True when the stream is stopped, False otherwise.

A stream is considered to be stopped prior to a successful call
to start() and after a successful call to stop() or
abort(). If a stream callback is cancelled (by raising an
exception) the stream is not considered to be stopped.

See also

active

	
time

	The current stream time in seconds.

This is according to the same clock used to generate the
timestamps passed with the time argument to the stream
callback (see the callback argument of Stream).
The time values are monotonically increasing and have
unspecified origin.

This provides valid time values for the entire life of the
stream, from when the stream is opened until it is closed.
Starting and stopping the stream does not affect the passage of
time as provided here.

This time may be used for synchronizing other events to the
audio stream, for example synchronizing audio to MIDI.

	
write(data)

	Write samples to the stream.

This function doesn’t return until the entire buffer has been
consumed – this may involve waiting for the operating system to
consume the data (except if data contains no more than
write_available frames).

This is the same as RawStream.write(), except that it
expects a NumPy array instead of a plain Python buffer object.

	Parameters

	data (array_like) – A two-dimensional array-like object with one column per
channel (i.e. with a shape of (frames, channels)) and
with a data type specified by dtype. A one-dimensional
array can be used for mono data. The array layout must be
C-contiguous (see numpy.ascontiguousarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray]).

The length of the buffer is not constrained to a specific
range, however high performance applications will want to
match this parameter to the blocksize parameter used when
opening the stream.

	Returns

	underflowed (bool) – True if additional output data was inserted after the
previous call and before this call.

	
write_available

	The number of frames that can be written without waiting.

Returns a value representing the maximum number of frames that
can be written to the stream without blocking or busy waiting.

	
class sounddevice.InputStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, extra_settings=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)

	Open an input stream.

This has the same methods and attributes as Stream, except
write() and write_available.
Furthermore, the stream callback is expected to have a different
signature (see below).

	Parameters

	callback (callable) – User-supplied function to consume audio in response to
requests from an active stream.
The callback must have this signature:

callback(indata: numpy.ndarray, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
Stream, except that outdata is missing.

See also

Stream, RawInputStream

	
class sounddevice.OutputStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, extra_settings=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)

	Open an output stream.

This has the same methods and attributes as Stream, except
read() and read_available.
Furthermore, the stream callback is expected to have a different
signature (see below).

	Parameters

	callback (callable) – User-supplied function to generate audio data in response to
requests from an active stream.
The callback must have this signature:

callback(outdata: numpy.ndarray, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
Stream, except that indata is missing.

See also

Stream, RawOutputStream

	
class sounddevice.RawStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, extra_settings=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)

	Open a “raw” input/output stream.

This is the same as Stream, except that the callback
function and read()/write() work on plain Python buffer
objects instead of on NumPy arrays.
NumPy is not necessary for using this.

To open a “raw” input-only or output-only stream use
RawInputStream or RawOutputStream, respectively.
If you want to handle audio data as NumPy arrays instead of
buffer objects, use Stream, InputStream or OutputStream.

	Parameters

	
	dtype (str or pair of str) – The sample format of the buffers provided to the stream
callback, read() or write().
In addition to the formats supported by Stream
('float32', 'int32', 'int16', 'int8',
'uint8'), this also supports 'int24', i.e.
packed 24 bit format.
The default value can be changed with default.dtype.
See also samplesize.

	callback (callable) – User-supplied function to consume, process or generate audio
data in response to requests from an active stream.
The callback must have this signature:

callback(indata: buffer, outdata: buffer, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
Stream, except that indata and outdata are plain
Python buffer objects instead of NumPy arrays.

See also

RawInputStream, RawOutputStream, Stream

	
read(frames)

	Read samples from the stream into a buffer.

This is the same as Stream.read(), except that it returns
a plain Python buffer object instead of a NumPy array.
NumPy is not necessary for using this.

	Parameters

	frames (int) – The number of frames to be read. See Stream.read().

	Returns

	
	data (buffer) – A buffer of interleaved samples. The buffer contains
samples in the format specified by the dtype parameter
used to open the stream, and the number of channels
specified by channels.
See also samplesize.

	overflowed (bool) – See Stream.read().

	
write(data)

	Write samples to the stream.

This is the same as Stream.write(), except that it expects
a plain Python buffer object instead of a NumPy array.
NumPy is not necessary for using this.

	Parameters

	data (buffer or bytes or iterable of int) – A buffer of interleaved samples. The buffer contains
samples in the format specified by the dtype argument used
to open the stream, and the number of channels specified by
channels. The length of the buffer is not constrained to
a specific range, however high performance applications will
want to match this parameter to the blocksize parameter
used when opening the stream. See also samplesize.

	Returns

	underflowed (bool) – See Stream.write().

	
class sounddevice.RawInputStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, extra_settings=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)

	Open a “raw” input stream.

This is the same as InputStream, except that the callback
function and read() work on plain Python buffer
objects instead of on NumPy arrays.
NumPy is not necessary for using this.

	Parameters

	
	dtype (str) – See RawStream.

	callback (callable) – User-supplied function to consume audio data in response to
requests from an active stream.
The callback must have this signature:

callback(indata: buffer, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
RawStream, except that outdata is missing.

See also

RawStream, Stream

	
class sounddevice.RawOutputStream(samplerate=None, blocksize=None, device=None, channels=None, dtype=None, latency=None, extra_settings=None, callback=None, finished_callback=None, clip_off=None, dither_off=None, never_drop_input=None, prime_output_buffers_using_stream_callback=None)

	Open a “raw” output stream.

This is the same as OutputStream, except that the callback
function and write() work on plain Python
buffer objects instead of on NumPy arrays.
NumPy is not necessary for using this.

	Parameters

	
	dtype (str) – See RawStream.

	callback (callable) – User-supplied function to generate audio data in response to
requests from an active stream.
The callback must have this signature:

callback(outdata: buffer, frames: int,
 time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of
RawStream, except that indata is missing.

See also

RawStream, Stream

	
class sounddevice.DeviceList

	A list with information about all available audio devices.

This class is not meant to be instantiated by the user.
Instead, it is returned by query_devices().
It contains a dictionary for each available device, holding the keys
described in query_devices().

This class has a special string representation that is shown as
return value of query_devices() if used in an interactive
Python session. It will also be shown when using the print() [https://docs.python.org/3/library/functions.html#print]
function. Furthermore, it can be obtained with repr() [https://docs.python.org/3/library/functions.html#repr] and
str() [https://docs.python.org/3/library/stdtypes.html#str].

	
class sounddevice.CallbackFlags(flags=0)

	Flag bits for the status argument to a stream callback.

See also

Stream

Examples

This can be used to collect the errors of multiple status objects:

>>> import sounddevice as sd
>>> errors = sd.CallbackFlags()
>>> errors |= status1
>>> errors |= status2
>>> errors |= status3
>>> # and so on ...
>>> errors.input_overflow
True

	
input_underflow

	Input underflow.

In a stream opened with blocksize=0, indicates that input
data is all silence (zeros) because no real data is available.
In a stream opened with a non-zero blocksize, it indicates
that one or more zero samples have been inserted into the input
buffer to compensate for an input underflow.

This can only happen in full-duplex streams (including
playrec()).

	
input_overflow

	Input overflow.

In a stream opened with blocksize=0, indicates that data
prior to the first sample of the input buffer was discarded due
to an overflow, possibly because the stream callback is using
too much CPU time. Otherwise indicates that data prior to one
or more samples in the input buffer was discarded.

This can happen in full-duplex and input-only streams (including
playrec() and rec()).

	
output_underflow

	Output underflow.

Indicates that output data (or a gap) was inserted, possibly
because the stream callback is using too much CPU time.

This can happen in full-duplex and output-only streams
(including playrec() and play()).

	
output_overflow

	Output overflow.

Indicates that output data will be discarded because no room is
available.

This can only happen in full-duplex streams (including
playrec()), but only when never_drop_input=True was
specified. See default.never_drop_input.

	
priming_output

	Priming output.

Some of all of the output data will be used to prime the stream,
input data may be zero.

This will only take place with some of the host APIs, and only
if prime_output_buffers_using_stream_callback=True was
specified.
See default.prime_output_buffers_using_stream_callback.

	
class sounddevice.CallbackStop

	Exception to be raised by the user to stop callback processing.

If this is raised in the stream callback, the callback will not be
invoked anymore (but all pending audio buffers will be played).

See also

CallbackAbort, Stream.stop(), Stream

	
class sounddevice.CallbackAbort

	Exception to be raised by the user to abort callback processing.

If this is raised in the stream callback, all pending buffers are
discarded and the callback will not be invoked anymore.

See also

CallbackStop, Stream.abort(), Stream

	
class sounddevice.PortAudioError

	This exception will be raised on PortAudio errors.

	
args

	A variable length tuple containing the following elements when
available:

	A string describing the error

	The PortAudio PaErrorCode value

	A 3-tuple containing the host API index, host error code, and the
host error message (which may be an empty string)

	
class sounddevice.AsioSettings(channel_selectors)

	ASIO-specific input/output settings.

Objects of this class can be used as extra_settings argument
to Stream() (and variants) or as default.extra_settings.

	Parameters

	channel_selectors (list of int) – Support for opening only specific channels of an ASIO
device. channel_selectors is a list of integers
specifying the (zero-based) channel numbers to use.
The length of channel_selectors must match the
corresponding channels parameter of Stream() (or
variants), otherwise a crash may result.
The values in the channel_selectors array must specify
channels within the range of supported channels.

Examples

Setting output channels when calling play():

>>> import sounddevice as sd
>>> asio_out = sd.AsioSettings(channel_selectors=[12, 13])
>>> sd.play(..., extra_settings=asio_out)

Setting default output channels:

>>> sd.default.extra_settings = asio_out
>>> sd.play(...)

Setting input channels as well:

>>> asio_in = sd.AsioSettings(channel_selectors=[8])
>>> sd.default.extra_settings = asio_in, asio_out
>>> sd.playrec(..., channels=1, ...)

	
class sounddevice.CoreAudioSettings(channel_map=None, change_device_parameters=False, fail_if_conversion_required=False, conversion_quality='max')

	Mac Core Audio-specific input/output settings.

Objects of this class can be used as extra_settings argument
to Stream() (and variants) or as default.extra_settings.

	Parameters

	
	channel_map (sequence of int, optional) – Support for opening only specific channels of a Core Audio
device. Note that channel_map is treated differently
between input and output channels.

For input devices, channel_map is a list of integers
specifying the (zero-based) channel numbers to use.

For output devices, channel_map must have the same length
as the number of output channels of the device. Specify
unused channels with -1, and a 0-based index for any desired
channels.

See the example below. For additional information, see the
PortAudio documentation [https://app.assembla.com/spaces/portaudio/git/source/master/src/hostapi/coreaudio/notes.txt].

	change_device_parameters (bool, optional) – If True, allows PortAudio to change things like the
device’s frame size, which allows for much lower latency,
but might disrupt the device if other programs are using it,
even when you are just querying the device. False is
the default.

	fail_if_conversion_required (bool, optional) – In combination with the above flag, True causes the
stream opening to fail, unless the exact sample rates are
supported by the device.

	conversion_quality ({‘min’, ‘low’, ‘medium’, ‘high’, ‘max’}, optional) – This sets Core Audio’s sample rate conversion quality.
'max' is the default.

Example

This example assumes a device having 6 input and 6 output
channels. Input is from the second and fourth channels, and
output is to the device’s third and fifth channels:

>>> import sounddevice as sd
>>> ca_in = sd.CoreAudioSettings(channel_map=[1, 3])
>>> ca_out = sd.CoreAudioSettings(channel_map=[-1, -1, 0, -1, 1, -1])
>>> sd.playrec(..., channels=2, extra_settings=(ca_in, ca_out))

	
class sounddevice.WasapiSettings(exclusive=False)

	WASAPI-specific input/output settings.

Objects of this class can be used as extra_settings argument
to Stream() (and variants) or as default.extra_settings.
They can also be used in check_input_settings() and
check_output_settings().

	Parameters

	exclusive (bool) – Exclusive mode allows to deliver audio data directly to
hardware bypassing software mixing.

Examples

Setting exclusive mode when calling play():

>>> import sounddevice as sd
>>> wasapi_exclusive = sd.WasapiSettings(exclusive=True)
>>> sd.play(..., extra_settings=wasapi_exclusive)

Setting exclusive mode as default:

>>> sd.default.extra_settings = wasapi_exclusive
>>> sd.play(...)

Version History

	0.3.14 (2019-09-25):

	
	Examples play_sine.py and rec_gui.py

	Redirect stderr only during initialization

	0.3.13 (2019-02-27):

	
	Examples asyncio_coroutines.py and asyncio_generators.py

	0.3.12 (2018-09-02):

	
	Support for the dylib from Anaconda

	0.3.11 (2018-05-07):

	
	Support for the DLL from conda-forge

	0.3.10 (2017-12-22):

	
	Change the way how the PortAudio library is located

	0.3.9 (2017-10-25):

	
	Add Stream.closed

	Switch CFFI usage to “out-of-line ABI” mode

	0.3.8 (2017-07-11):

	
	Add more ignore_errors arguments

	Add PortAudioError.args

	Add CoreAudioSettings

	0.3.7 (2017-02-16):

	
	Add get_stream()

	Support for CData function pointers as callbacks

	0.3.6 (2016-12-19):

	
	Example application play_long_file.py

	0.3.5 (2016-09-12):

	
	Add extra_settings option for host-API-specific stream settings

	Add AsioSettings and WasapiSettings

	0.3.4 (2016-08-05):

	
	Example application rec_unlimited.py

	0.3.3 (2016-04-11):

	
	Add loop argument to play()

	0.3.2 (2016-03-16):

	
	mapping=[1] works now on all host APIs

	Example application plot_input.py showing the live microphone signal(s)

	Device substrings are now allowed in query_devices()

	0.3.1 (2016-01-04):

	
	Add check_input_settings() and check_output_settings()

	Send PortAudio output to /dev/null (on Linux and OSX)

	0.3.0 (2015-10-28):

	
	Remove print_devices(), query_devices() can be used instead,
since it now returns a DeviceList object.

	0.2.2 (2015-10-21):

	
	Devices can now be selected by substrings of device name and host API name

	0.2.1 (2015-10-08):

	
	Example applications wire.py (based on PortAudio’s patest_wire.c)
and spectrogram.py (based on code by Mauris Van Hauwe)

	0.2.0 (2015-07-03):

	
	Support for wheels including a dylib for Mac OS X and DLLs for Windows.
The code for creating the wheels is largely taken from PySoundFile [https://github.com/bastibe/SoundFile/].

	Remove logging (this seemed too intrusive)

	Return callback status from wait() and add the new function get_status()

	playrec(): Rename the arguments input_channels and input_dtype
to channels and dtype, respectively

	0.1.0 (2015-06-20):

	Initial release. Some ideas are taken from PySoundCard [https://github.com/bastibe/PySoundCard/]. Thanks to Bastian
Bechtold for many fruitful discussions during the development of several
features which python-sounddevice inherited from there.

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	
 	abort() (sounddevice.Stream method)

 	active (sounddevice.Stream attribute)

 	
 	args (sounddevice.PortAudioError attribute)

 	AsioSettings (class in sounddevice)

B

 	
 	blocksize (sounddevice.default attribute)

 	(sounddevice.Stream attribute)

C

 	
 	CallbackAbort (class in sounddevice)

 	CallbackFlags (class in sounddevice)

 	CallbackStop (class in sounddevice)

 	channels (sounddevice.default attribute)

 	(sounddevice.Stream attribute)

 	check_input_settings() (in module sounddevice)

 	
 	check_output_settings() (in module sounddevice)

 	clip_off (sounddevice.default attribute)

 	close() (sounddevice.Stream method)

 	closed (sounddevice.Stream attribute)

 	CoreAudioSettings (class in sounddevice)

 	cpu_load (sounddevice.Stream attribute)

D

 	
 	default (class in sounddevice)

 	device (sounddevice.default attribute)

 	(sounddevice.Stream attribute)

 	
 	DeviceList (class in sounddevice)

 	dither_off (sounddevice.default attribute)

 	dtype (sounddevice.default attribute)

 	(sounddevice.Stream attribute)

E

 	
 	extra_settings (sounddevice.default attribute)

G

 	
 	get_portaudio_version() (in module sounddevice)

 	
 	get_status() (in module sounddevice)

 	get_stream() (in module sounddevice)

H

 	
 	hostapi (sounddevice.default attribute)

I

 	
 	input_overflow (sounddevice.CallbackFlags attribute)

 	
 	input_underflow (sounddevice.CallbackFlags attribute)

 	InputStream (class in sounddevice)

L

 	
 	latency (sounddevice.default attribute)

 	(sounddevice.Stream attribute)

N

 	
 	never_drop_input (sounddevice.default attribute)

O

 	
 	output_overflow (sounddevice.CallbackFlags attribute)

 	
 	output_underflow (sounddevice.CallbackFlags attribute)

 	OutputStream (class in sounddevice)

P

 	
 	play() (in module sounddevice)

 	playrec() (in module sounddevice)

 	
 	PortAudioError (class in sounddevice)

 	prime_output_buffers_using_stream_callback (sounddevice.default attribute)

 	priming_output (sounddevice.CallbackFlags attribute)

Q

 	
 	query_devices() (in module sounddevice)

 	
 	query_hostapis() (in module sounddevice)

R

 	
 	RawInputStream (class in sounddevice)

 	RawOutputStream (class in sounddevice)

 	RawStream (class in sounddevice)

 	read() (sounddevice.RawStream method)

 	(sounddevice.Stream method)

 	
 	read_available (sounddevice.Stream attribute)

 	rec() (in module sounddevice)

 	reset() (sounddevice.default method)

S

 	
 	samplerate (sounddevice.default attribute)

 	(sounddevice.Stream attribute)

 	samplesize (sounddevice.Stream attribute)

 	sleep() (in module sounddevice)

 	sounddevice (module)

 	
 	start() (sounddevice.Stream method)

 	stop() (in module sounddevice)

 	(sounddevice.Stream method)

 	stopped (sounddevice.Stream attribute)

 	Stream (class in sounddevice)

T

 	
 	time (sounddevice.Stream attribute)

W

 	
 	wait() (in module sounddevice)

 	WasapiSettings (class in sounddevice)

 	
 	write() (sounddevice.RawStream method)

 	(sounddevice.Stream method)

 	write_available (sounddevice.Stream attribute)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Play and Record Sound with Python

 		
 Installation

 		
 Usage

 		
 Playback

 		
 Recording

 		
 Simultaneous Playback and Recording

 		
 Device Selection

 		
 Callback Streams

 		
 Blocking Read/Write Streams

 		
 Example Programs

 		
 Play a Sound File

 		
 Play a Very Long Sound File

 		
 Play a Sine Signal

 		
 Input to Output Pass-Through

 		
 Plot Microphone Signal(s) in Real-Time

 		
 Real-Time Text-Mode Spectrogram

 		
 Recording with Arbitrary Duration

 		
 Using a stream in an asyncio coroutine

 		
 Creating an asyncio generator for audio blocks

 		
 Contributing

 		
 API Documentation

 		
 Version History

_static/up-pressed.png

_static/up.png

_static/plus.png

