
python-sounddevice
Release 0.4.1

Matthias Geier

2020-09-26

Contents

1 Installation 2

2 Usage 3
2.1 Playback . 3
2.2 Recording . 3
2.3 Simultaneous Playback and Recording . 4
2.4 Device Selection . 4
2.5 Callback Streams . 5
2.6 Blocking Read/Write Streams . 5

3 Example Programs 6
3.1 Play a Sound File . 6
3.2 Play a Very Long Sound File . 7
3.3 Play a Web Stream . 9
3.4 Play a Sine Signal . 11
3.5 Input to Output Pass-Through . 12
3.6 Plot Microphone Signal(s) in Real-Time . 13
3.7 Real-Time Text-Mode Spectrogram . 15
3.8 Recording with Arbitrary Duration . 17
3.9 Using a stream in an asyncio coroutine . 19
3.10 Creating an asyncio generator for audio blocks . 20

4 Contributing 22
4.1 Reporting Problems . 22
4.2 Development Installation . 24
4.3 Building the Documentation . 24

5 API Documentation 24
5.1 Convenience Functions using NumPy Arrays . 25
5.2 Checking Available Hardware . 28
5.3 Module-wide Default Settings . 31
5.4 Platform-specific Settings . 33
5.5 Streams using NumPy Arrays . 34
5.6 Raw Streams . 41
5.7 Miscellaneous . 43
5.8 Expert Mode . 45

6 Version History 46

1

This Python1 module provides bindings for the PortAudio2 library and a few convenience functions to play and
record NumPy3 arrays containing audio signals.

The sounddevice module is available for Linux, macOS and Windows.

Documentation: https://python-sounddevice.readthedocs.io/

Source code repository and issue tracker: https://github.com/spatialaudio/python-sounddevice/

License: MIT – see the file LICENSE for details.

1 Installation

First of all, you’ll need Python4. Any version where CFFI5 is supported should work. If you don’t have Python
installed yet, you should get one of the distributions which already include CFFI and NumPy6 (and many other
useful things), e.g. Anaconda7 or WinPython8.

If you are using the conda package manager (e.g. with Anaconda9 for Linux/macOS/Windows), you can install
the sounddevice module from the conda-forge channel:

conda install -c conda-forge python-sounddevice

Note: The PortAudio package on conda-forge doesn’t have ASIO support, see https://github.com/
conda-forge/portaudio-feedstock/issues/9.

There are also packages for several other package managers:

https://repology.org/metapackage/python:sounddevice

If you are using Windows, you can alternatively install one of the packages provided at https://www.lfd.uci.edu/
~gohlke/pythonlibs/#sounddevice. The PortAudio10 library (with ASIO support) is included in the package and
you can get the rest of the dependencies on the same page.

Note that some of the aforementioned packages may be out-of-date. You can always get the newest
sounddevice release from PyPI11 (using pip). If you want to try the latest development version, have a
look at the section about Contributing.

To install the latest release from PyPI, use:

python3 -m pip install sounddevice

Depending on your Python installation, you may have to use python instead of python3. If you have installed
the module already, you can use the --upgrade flag to get the newest release.

To un-install, use:

python3 -m pip uninstall sounddevice

1 https://www.python.org/
2 http://www.portaudio.com/
3 https://numpy.org/
4 https://www.python.org/
5 https://cffi.readthedocs.io/
6 https://numpy.org/
7 https://www.anaconda.com/products/individual#Downloads
8 https://winpython.github.io/
9 https://www.anaconda.com/products/individual#Downloads

10 http://www.portaudio.com/
11 https://pypi.org/project/sounddevice/

2

https://www.python.org/
http://www.portaudio.com/
https://numpy.org/
https://python-sounddevice.readthedocs.io/
https://github.com/spatialaudio/python-sounddevice/
https://www.python.org/
https://cffi.readthedocs.io/
https://numpy.org/
https://www.anaconda.com/products/individual#Downloads
https://winpython.github.io/
https://www.anaconda.com/products/individual#Downloads
https://github.com/conda-forge/portaudio-feedstock/issues/9
https://github.com/conda-forge/portaudio-feedstock/issues/9
https://repology.org/metapackage/python:sounddevice
https://www.lfd.uci.edu/~gohlke/pythonlibs/#sounddevice
https://www.lfd.uci.edu/~gohlke/pythonlibs/#sounddevice
http://www.portaudio.com/
https://pypi.org/project/sounddevice/

If you install the sounddevice module with pip on macOS or Windows, the PortAudio12 library (with ASIO
support on Windows) will be installed automagically. On other platforms, you might have to install PortAudio
with your package manager (the package might be called libportaudio2 or similar).

You might also have to install CFFI13 (from a package called python3-cffi or similar).

NumPy14 is only needed if you want to play back and record NumPy arrays. The classes sounddevice.
RawStream, sounddevice.RawInputStream and sounddevice.RawOutputStream use plain
Python buffer objects and don’t need NumPy at all. If you need NumPy, you should install it with your pack-
age manager (from a package named python3-numpy or similar) or use a Python distribution that already
includes NumPy (see above). You can also install NumPy with pip, but depending on your platform, this might
require a compiler and several additional libraries.

2 Usage

First, import the module:

import sounddevice as sd

2.1 Playback

Assuming you have a NumPy array named myarray holding audio data with a sampling frequency of fs (in the
most cases this will be 44100 or 48000 frames per second), you can play it back with play():

sd.play(myarray, fs)

This function returns immediately but continues playing the audio signal in the background. You can stop playback
with stop():

sd.stop()

If you want to block the Python interpreter until playback is finished, you can use wait():

sd.wait()

If you know that you will use the same sampling frequency for a while, you can set it as default using default.
samplerate:

sd.default.samplerate = fs

After that, you can drop the samplerate argument:

sd.play(myarray)

Note: If you don’t specify the correct sampling frequency, the sound might be played back too slow or too fast!

2.2 Recording

To record audio data from your sound device into a NumPy array, you can use rec():

duration = 10.5 # seconds
myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=2)

12 http://www.portaudio.com/
13 https://cffi.readthedocs.io/
14 https://numpy.org/

3

http://www.portaudio.com/
https://cffi.readthedocs.io/
https://numpy.org/

Again, for repeated use you can set defaults using default:

sd.default.samplerate = fs
sd.default.channels = 2

After that, you can drop the additional arguments:

myrecording = sd.rec(int(duration * fs))

This function also returns immediately but continues recording in the background. In the meantime, you can run
other commands. If you want to check if the recording is finished, you should use wait():

sd.wait()

If the recording was already finished, this returns immediately; if not, it waits and returns as soon as the recording
is finished.

By default, the recorded array has the data type 'float32' (see default.dtype), but this can be changed
with the dtype argument:

myrecording = sd.rec(int(duration * fs), dtype='float64')

2.3 Simultaneous Playback and Recording

To play back an array and record at the same time, you can use playrec():

myrecording = sd.playrec(myarray, fs, channels=2)

The number of output channels is obtained from myarray, but the number of input channels still has to be
specified.

Again, default values can be used:

sd.default.samplerate = fs
sd.default.channels = 2
myrecording = sd.playrec(myarray)

In this case the number of output channels is still taken from myarray (which may or may not have 2 channels),
but the number of input channels is taken from default.channels.

2.4 Device Selection

In many cases, the default input/output device(s) will be the one(s) you want, but it is of course possible to choose
a different device. Use query_devices() to get a list of supported devices. The same list can be obtained
from a terminal by typing the command

python3 -m sounddevice

You can use the corresponding device ID to select a desired device by assigning to default.device or by
passing it as device argument to play(), Stream() etc.

Instead of the numerical device ID, you can also use a space-separated list of case-insensitive substrings of the
device name (and the host API name, if needed). See default.device for details.

import sounddevice as sd
sd.default.samplerate = 44100
sd.default.device = 'digital output'
sd.play(myarray)

4

2.5 Callback Streams

The aforementioned convenience functions play(), rec() and playrec() (as well as the related functions
wait(), stop(), get_status() and get_stream()) are designed for small scripts and interactive use
(e.g. in a Jupyter15 notebook). They are supposed to be simple and convenient, but their use cases are quite
limited.

If you need more control (e.g. continuous recording, realtime processing, . . .), you should use the lower-level
“stream” classes (e.g. Stream, InputStream, RawInputStream), either with the “non-blocking” callback
interface or with the “blocking” Stream.read() and Stream.write() methods, see Blocking Read/Write
Streams.

As an example for the “non-blocking” interface, the following code creates a Streamwith a callback function that
obtains audio data from the input channels and simply forwards everything to the output channels (be careful with
the output volume, because this might cause acoustic feedback if your microphone is close to your loudspeakers):

import sounddevice as sd
duration = 5.5 # seconds

def callback(indata, outdata, frames, time, status):
if status:

print(status)
outdata[:] = indata

with sd.Stream(channels=2, callback=callback):
sd.sleep(int(duration * 1000))

The same thing can be done with RawStream (NumPy16 doesn’t have to be installed):

import sounddevice as sd
duration = 5.5 # seconds

def callback(indata, outdata, frames, time, status):
if status:

print(status)
outdata[:] = indata

with sd.RawStream(channels=2, dtype='int24', callback=callback):
sd.sleep(int(duration * 1000))

Note: We are using 24-bit samples here for no particular reason (just because we can).

You can of course extend the callback functions to do arbitrarily more complicated stuff. You can also use streams
without inputs (e.g. OutputStream) or streams without outputs (e.g. InputStream).

See Example Programs for more examples.

2.6 Blocking Read/Write Streams

Instead of using a callback function, you can also use the “blocking” methods Stream.read() and Stream.
write() (and of course the corresponding methods in InputStream, OutputStream, RawStream,
RawInputStream and RawOutputStream).

15 https://jupyter.org/
16 https://numpy.org/

5

https://jupyter.org/
https://numpy.org/

3 Example Programs

Most of these examples use the argparse17 module to handle command line arguments. To show a help text
explaining all available arguments, use the --help argument.

For example:

python3 play_file.py --help

3.1 Play a Sound File

play_file.py18

#!/usr/bin/env python3
"""Load an audio file into memory and play its contents.

NumPy and the soundfile module (https://PySoundFile.readthedocs.io/)
must be installed for this to work.

This example program loads the whole file into memory before starting
playback.
To play very long files, you should use play_long_file.py instead.

"""
import argparse

import sounddevice as sd
import soundfile as sf

def int_or_str(text):
"""Helper function for argument parsing."""
try:

return int(text)
except ValueError:

return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(

'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')

args, remaining = parser.parse_known_args()
if args.list_devices:

print(sd.query_devices())
parser.exit(0)

parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])

parser.add_argument(
'filename', metavar='FILENAME',
help='audio file to be played back')

parser.add_argument(
'-d', '--device', type=int_or_str,
help='output device (numeric ID or substring)')

args = parser.parse_args(remaining)

(continues on next page)

17 https://docs.python.org/3/library/argparse.html#module-argparse
18 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/play_file.py

6

https://docs.python.org/3/library/argparse.html#module-argparse
https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/play_file.py

(continued from previous page)

try:
data, fs = sf.read(args.filename, dtype='float32')
sd.play(data, fs, device=args.device)
status = sd.wait()

except KeyboardInterrupt:
parser.exit('\nInterrupted by user')

except Exception as e:
parser.exit(type(e).__name__ + ': ' + str(e))

if status:
parser.exit('Error during playback: ' + str(status))

3.2 Play a Very Long Sound File

play_long_file.py19

#!/usr/bin/env python3
"""Play an audio file using a limited amount of memory.

The soundfile module (https://PySoundFile.readthedocs.io/) must be
installed for this to work. NumPy is not needed.

In contrast to play_file.py, which loads the whole file into memory
before starting playback, this example program only holds a given number
of audio blocks in memory and is therefore able to play files that are
larger than the available RAM.

A similar example could of course be implemented using NumPy,
but this example shows what can be done when NumPy is not available.

"""
import argparse
import queue
import sys
import threading

import sounddevice as sd
import soundfile as sf

def int_or_str(text):
"""Helper function for argument parsing."""
try:

return int(text)
except ValueError:

return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(

'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')

args, remaining = parser.parse_known_args()
if args.list_devices:

print(sd.query_devices())
parser.exit(0)

parser = argparse.ArgumentParser(
description=__doc__,

(continues on next page)

19 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/play_long_file.py

7

https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/play_long_file.py

(continued from previous page)

formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])

parser.add_argument(
'filename', metavar='FILENAME',
help='audio file to be played back')

parser.add_argument(
'-d', '--device', type=int_or_str,
help='output device (numeric ID or substring)')

parser.add_argument(
'-b', '--blocksize', type=int, default=2048,
help='block size (default: %(default)s)')

parser.add_argument(
'-q', '--buffersize', type=int, default=20,
help='number of blocks used for buffering (default: %(default)s)')

args = parser.parse_args(remaining)
if args.blocksize == 0:

parser.error('blocksize must not be zero')
if args.buffersize < 1:

parser.error('buffersize must be at least 1')

q = queue.Queue(maxsize=args.buffersize)
event = threading.Event()

def callback(outdata, frames, time, status):
assert frames == args.blocksize
if status.output_underflow:

print('Output underflow: increase blocksize?', file=sys.stderr)
raise sd.CallbackAbort

assert not status
try:

data = q.get_nowait()
except queue.Empty as e:

print('Buffer is empty: increase buffersize?', file=sys.stderr)
raise sd.CallbackAbort from e

if len(data) < len(outdata):
outdata[:len(data)] = data
outdata[len(data):] = b'\x00' * (len(outdata) - len(data))
raise sd.CallbackStop

else:
outdata[:] = data

try:
with sf.SoundFile(args.filename) as f:

for _ in range(args.buffersize):
data = f.buffer_read(args.blocksize, dtype='float32')
if not data:

break
q.put_nowait(data) # Pre-fill queue

stream = sd.RawOutputStream(
samplerate=f.samplerate, blocksize=args.blocksize,
device=args.device, channels=f.channels, dtype='float32',
callback=callback, finished_callback=event.set)

with stream:
timeout = args.blocksize * args.buffersize / f.samplerate
while data:

data = f.buffer_read(args.blocksize, dtype='float32')
q.put(data, timeout=timeout)

event.wait() # Wait until playback is finished
except KeyboardInterrupt:

(continues on next page)

8

(continued from previous page)

parser.exit('\nInterrupted by user')
except queue.Full:

A timeout occurred, i.e. there was an error in the callback
parser.exit(1)

except Exception as e:
parser.exit(type(e).__name__ + ': ' + str(e))

3.3 Play a Web Stream

play_stream.py20

#!/usr/bin/env python3
"""Play a web stream.

ffmpeg-python (https://github.com/kkroening/ffmpeg-python) has to be installed.

If you don't know a stream URL, try http://icecast.spc.org:8000/longplayer
(see https://longplayer.org/ for a description).

"""
import argparse
import queue
import sys

import ffmpeg
import sounddevice as sd

def int_or_str(text):
"""Helper function for argument parsing."""
try:

return int(text)
except ValueError:

return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(

'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')

args, remaining = parser.parse_known_args()
if args.list_devices:

print(sd.query_devices())
parser.exit(0)

parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])

parser.add_argument(
'url', metavar='URL',
help='stream URL')

parser.add_argument(
'-d', '--device', type=int_or_str,
help='output device (numeric ID or substring)')

parser.add_argument(
'-b', '--blocksize', type=int, default=1024,
help='block size (default: %(default)s)')

parser.add_argument(

(continues on next page)

20 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/play_stream.py

9

https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/play_stream.py

(continued from previous page)

'-q', '--buffersize', type=int, default=20,
help='number of blocks used for buffering (default: %(default)s)')

args = parser.parse_args(remaining)
if args.blocksize == 0:

parser.error('blocksize must not be zero')
if args.buffersize < 1:

parser.error('buffersize must be at least 1')

q = queue.Queue(maxsize=args.buffersize)

print('Getting stream information ...')

try:
info = ffmpeg.probe(args.url)

except ffmpeg.Error as e:
sys.stderr.buffer.write(e.stderr)
parser.exit(e)

streams = info.get('streams', [])
if len(streams) != 1:

parser.exit('There must be exactly one stream available')

stream = streams[0]

if stream.get('codec_type') != 'audio':
parser.exit('The stream must be an audio stream')

channels = stream['channels']
samplerate = float(stream['sample_rate'])

def callback(outdata, frames, time, status):
assert frames == args.blocksize
if status.output_underflow:

print('Output underflow: increase blocksize?', file=sys.stderr)
raise sd.CallbackAbort

assert not status
try:

data = q.get_nowait()
except queue.Empty as e:

print('Buffer is empty: increase buffersize?', file=sys.stderr)
raise sd.CallbackAbort from e

assert len(data) == len(outdata)
outdata[:] = data

try:
print('Opening stream ...')
process = ffmpeg.input(

args.url
).output(

'pipe:',
format='f32le',
acodec='pcm_f32le',
ac=channels,
ar=samplerate,
loglevel='quiet',

).run_async(pipe_stdout=True)
stream = sd.RawOutputStream(

samplerate=samplerate, blocksize=args.blocksize,
device=args.device, channels=channels, dtype='float32',

(continues on next page)

10

(continued from previous page)

callback=callback)
read_size = args.blocksize * channels * stream.samplesize
print('Buffering ...')
for _ in range(args.buffersize):

q.put_nowait(process.stdout.read(read_size))
print('Starting Playback ...')
with stream:

timeout = args.blocksize * args.buffersize / samplerate
while True:

q.put(process.stdout.read(read_size), timeout=timeout)
except KeyboardInterrupt:

parser.exit('\nInterrupted by user')
except queue.Full:

A timeout occurred, i.e. there was an error in the callback
parser.exit(1)

except Exception as e:
parser.exit(type(e).__name__ + ': ' + str(e))

3.4 Play a Sine Signal

play_sine.py21

#!/usr/bin/env python3
"""Play a sine signal."""
import argparse
import sys

import numpy as np
import sounddevice as sd

def int_or_str(text):
"""Helper function for argument parsing."""
try:

return int(text)
except ValueError:

return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(

'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')

args, remaining = parser.parse_known_args()
if args.list_devices:

print(sd.query_devices())
parser.exit(0)

parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])

parser.add_argument(
'frequency', nargs='?', metavar='FREQUENCY', type=float, default=500,
help='frequency in Hz (default: %(default)s)')

parser.add_argument(
'-d', '--device', type=int_or_str,
help='output device (numeric ID or substring)')

parser.add_argument(

(continues on next page)

21 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/play_sine.py

11

https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/play_sine.py

(continued from previous page)

'-a', '--amplitude', type=float, default=0.2,
help='amplitude (default: %(default)s)')

args = parser.parse_args(remaining)

start_idx = 0

try:
samplerate = sd.query_devices(args.device, 'output')['default_samplerate']

def callback(outdata, frames, time, status):
if status:

print(status, file=sys.stderr)
global start_idx
t = (start_idx + np.arange(frames)) / samplerate
t = t.reshape(-1, 1)
outdata[:] = args.amplitude * np.sin(2 * np.pi * args.frequency * t)
start_idx += frames

with sd.OutputStream(device=args.device, channels=1, callback=callback,
samplerate=samplerate):

print('#' * 80)
print('press Return to quit')
print('#' * 80)
input()

except KeyboardInterrupt:
parser.exit('')

except Exception as e:
parser.exit(type(e).__name__ + ': ' + str(e))

3.5 Input to Output Pass-Through

wire.py22

#!/usr/bin/env python3
"""Pass input directly to output.

https://app.assembla.com/spaces/portaudio/git/source/master/test/patest_wire.c

"""
import argparse

import sounddevice as sd
import numpy # Make sure NumPy is loaded before it is used in the callback
assert numpy # avoid "imported but unused" message (W0611)

def int_or_str(text):
"""Helper function for argument parsing."""
try:

return int(text)
except ValueError:

return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(

'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')

(continues on next page)

22 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/wire.py

12

https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/wire.py

(continued from previous page)

args, remaining = parser.parse_known_args()
if args.list_devices:

print(sd.query_devices())
parser.exit(0)

parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])

parser.add_argument(
'-i', '--input-device', type=int_or_str,
help='input device (numeric ID or substring)')

parser.add_argument(
'-o', '--output-device', type=int_or_str,
help='output device (numeric ID or substring)')

parser.add_argument(
'-c', '--channels', type=int, default=2,
help='number of channels')

parser.add_argument('--dtype', help='audio data type')
parser.add_argument('--samplerate', type=float, help='sampling rate')
parser.add_argument('--blocksize', type=int, help='block size')
parser.add_argument('--latency', type=float, help='latency in seconds')
args = parser.parse_args(remaining)

def callback(indata, outdata, frames, time, status):
if status:

print(status)
outdata[:] = indata

try:
with sd.Stream(device=(args.input_device, args.output_device),

samplerate=args.samplerate, blocksize=args.blocksize,
dtype=args.dtype, latency=args.latency,
channels=args.channels, callback=callback):

print('#' * 80)
print('press Return to quit')
print('#' * 80)
input()

except KeyboardInterrupt:
parser.exit('')

except Exception as e:
parser.exit(type(e).__name__ + ': ' + str(e))

3.6 Plot Microphone Signal(s) in Real-Time

plot_input.py23

#!/usr/bin/env python3
"""Plot the live microphone signal(s) with matplotlib.

Matplotlib and NumPy have to be installed.

"""
import argparse
import queue
import sys

(continues on next page)

23 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/plot_input.py

13

https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/plot_input.py

(continued from previous page)

from matplotlib.animation import FuncAnimation
import matplotlib.pyplot as plt
import numpy as np
import sounddevice as sd

def int_or_str(text):
"""Helper function for argument parsing."""
try:

return int(text)
except ValueError:

return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(

'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')

args, remaining = parser.parse_known_args()
if args.list_devices:

print(sd.query_devices())
parser.exit(0)

parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])

parser.add_argument(
'channels', type=int, default=[1], nargs='*', metavar='CHANNEL',
help='input channels to plot (default: the first)')

parser.add_argument(
'-d', '--device', type=int_or_str,
help='input device (numeric ID or substring)')

parser.add_argument(
'-w', '--window', type=float, default=200, metavar='DURATION',
help='visible time slot (default: %(default)s ms)')

parser.add_argument(
'-i', '--interval', type=float, default=30,
help='minimum time between plot updates (default: %(default)s ms)')

parser.add_argument(
'-b', '--blocksize', type=int, help='block size (in samples)')

parser.add_argument(
'-r', '--samplerate', type=float, help='sampling rate of audio device')

parser.add_argument(
'-n', '--downsample', type=int, default=10, metavar='N',
help='display every Nth sample (default: %(default)s)')

args = parser.parse_args(remaining)
if any(c < 1 for c in args.channels):

parser.error('argument CHANNEL: must be >= 1')
mapping = [c - 1 for c in args.channels] # Channel numbers start with 1
q = queue.Queue()

def audio_callback(indata, frames, time, status):
"""This is called (from a separate thread) for each audio block."""
if status:

print(status, file=sys.stderr)
Fancy indexing with mapping creates a (necessary!) copy:
q.put(indata[::args.downsample, mapping])

def update_plot(frame):

(continues on next page)

14

(continued from previous page)

"""This is called by matplotlib for each plot update.

Typically, audio callbacks happen more frequently than plot updates,
therefore the queue tends to contain multiple blocks of audio data.

"""
global plotdata
while True:

try:
data = q.get_nowait()

except queue.Empty:
break

shift = len(data)
plotdata = np.roll(plotdata, -shift, axis=0)
plotdata[-shift:, :] = data

for column, line in enumerate(lines):
line.set_ydata(plotdata[:, column])

return lines

try:
if args.samplerate is None:

device_info = sd.query_devices(args.device, 'input')
args.samplerate = device_info['default_samplerate']

length = int(args.window * args.samplerate / (1000 * args.downsample))
plotdata = np.zeros((length, len(args.channels)))

fig, ax = plt.subplots()
lines = ax.plot(plotdata)
if len(args.channels) > 1:

ax.legend(['channel {}'.format(c) for c in args.channels],
loc='lower left', ncol=len(args.channels))

ax.axis((0, len(plotdata), -1, 1))
ax.set_yticks([0])
ax.yaxis.grid(True)
ax.tick_params(bottom=False, top=False, labelbottom=False,

right=False, left=False, labelleft=False)
fig.tight_layout(pad=0)

stream = sd.InputStream(
device=args.device, channels=max(args.channels),
samplerate=args.samplerate, callback=audio_callback)

ani = FuncAnimation(fig, update_plot, interval=args.interval, blit=True)
with stream:

plt.show()
except Exception as e:

parser.exit(type(e).__name__ + ': ' + str(e))

3.7 Real-Time Text-Mode Spectrogram

spectrogram.py24

#!/usr/bin/env python3
"""Show a text-mode spectrogram using live microphone data."""
import argparse
import math
import shutil

(continues on next page)

24 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/spectrogram.py

15

https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/spectrogram.py

(continued from previous page)

import numpy as np
import sounddevice as sd

usage_line = ' press <enter> to quit, +<enter> or -<enter> to change scaling '

def int_or_str(text):
"""Helper function for argument parsing."""
try:

return int(text)
except ValueError:

return text

try:
columns, _ = shutil.get_terminal_size()

except AttributeError:
columns = 80

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(

'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')

args, remaining = parser.parse_known_args()
if args.list_devices:

print(sd.query_devices())
parser.exit(0)

parser = argparse.ArgumentParser(
description=__doc__ + '\n\nSupported keys:' + usage_line,
formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])

parser.add_argument(
'-b', '--block-duration', type=float, metavar='DURATION', default=50,
help='block size (default %(default)s milliseconds)')

parser.add_argument(
'-c', '--columns', type=int, default=columns,
help='width of spectrogram')

parser.add_argument(
'-d', '--device', type=int_or_str,
help='input device (numeric ID or substring)')

parser.add_argument(
'-g', '--gain', type=float, default=10,
help='initial gain factor (default %(default)s)')

parser.add_argument(
'-r', '--range', type=float, nargs=2,
metavar=('LOW', 'HIGH'), default=[100, 2000],
help='frequency range (default %(default)s Hz)')

args = parser.parse_args(remaining)
low, high = args.range
if high <= low:

parser.error('HIGH must be greater than LOW')

Create a nice output gradient using ANSI escape sequences.
Stolen from https://gist.github.com/maurisvh/df919538bcef391bc89f
colors = 30, 34, 35, 91, 93, 97
chars = ' :%#\t#%:'
gradient = []
for bg, fg in zip(colors, colors[1:]):

for char in chars:
if char == '\t':

(continues on next page)

16

(continued from previous page)

bg, fg = fg, bg
else:

gradient.append('\x1b[{};{}m{}'.format(fg, bg + 10, char))

try:
samplerate = sd.query_devices(args.device, 'input')['default_samplerate']

delta_f = (high - low) / (args.columns - 1)
fftsize = math.ceil(samplerate / delta_f)
low_bin = math.floor(low / delta_f)

def callback(indata, frames, time, status):
if status:

text = ' ' + str(status) + ' '
print('\x1b[34;40m', text.center(args.columns, '#'),

'\x1b[0m', sep='')
if any(indata):

magnitude = np.abs(np.fft.rfft(indata[:, 0], n=fftsize))
magnitude *= args.gain / fftsize
line = (gradient[int(np.clip(x, 0, 1) * (len(gradient) - 1))]

for x in magnitude[low_bin:low_bin + args.columns])
print(*line, sep='', end='\x1b[0m\n')

else:
print('no input')

with sd.InputStream(device=args.device, channels=1, callback=callback,
blocksize=int(samplerate * args.block_duration / 1000),
samplerate=samplerate):

while True:
response = input()
if response in ('', 'q', 'Q'):

break
for ch in response:

if ch == '+':
args.gain *= 2

elif ch == '-':
args.gain /= 2

else:
print('\x1b[31;40m', usage_line.center(args.columns, '#'),

'\x1b[0m', sep='')
break

except KeyboardInterrupt:
parser.exit('Interrupted by user')

except Exception as e:
parser.exit(type(e).__name__ + ': ' + str(e))

3.8 Recording with Arbitrary Duration

rec_unlimited.py25

#!/usr/bin/env python3
"""Create a recording with arbitrary duration.

The soundfile module (https://PySoundFile.readthedocs.io/) has to be installed!

"""
import argparse
import tempfile

(continues on next page)

25 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/rec_unlimited.py

17

https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/rec_unlimited.py

(continued from previous page)

import queue
import sys

import sounddevice as sd
import soundfile as sf
import numpy # Make sure NumPy is loaded before it is used in the callback
assert numpy # avoid "imported but unused" message (W0611)

def int_or_str(text):
"""Helper function for argument parsing."""
try:

return int(text)
except ValueError:

return text

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(

'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')

args, remaining = parser.parse_known_args()
if args.list_devices:

print(sd.query_devices())
parser.exit(0)

parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])

parser.add_argument(
'filename', nargs='?', metavar='FILENAME',
help='audio file to store recording to')

parser.add_argument(
'-d', '--device', type=int_or_str,
help='input device (numeric ID or substring)')

parser.add_argument(
'-r', '--samplerate', type=int, help='sampling rate')

parser.add_argument(
'-c', '--channels', type=int, default=1, help='number of input channels')

parser.add_argument(
'-t', '--subtype', type=str, help='sound file subtype (e.g. "PCM_24")')

args = parser.parse_args(remaining)

q = queue.Queue()

def callback(indata, frames, time, status):
"""This is called (from a separate thread) for each audio block."""
if status:

print(status, file=sys.stderr)
q.put(indata.copy())

try:
if args.samplerate is None:

device_info = sd.query_devices(args.device, 'input')
soundfile expects an int, sounddevice provides a float:
args.samplerate = int(device_info['default_samplerate'])

if args.filename is None:
args.filename = tempfile.mktemp(prefix='delme_rec_unlimited_',

suffix='.wav', dir='')

(continues on next page)

18

(continued from previous page)

Make sure the file is opened before recording anything:
with sf.SoundFile(args.filename, mode='x', samplerate=args.samplerate,

channels=args.channels, subtype=args.subtype) as file:
with sd.InputStream(samplerate=args.samplerate, device=args.device,

channels=args.channels, callback=callback):
print('#' * 80)
print('press Ctrl+C to stop the recording')
print('#' * 80)
while True:

file.write(q.get())
except KeyboardInterrupt:

print('\nRecording finished: ' + repr(args.filename))
parser.exit(0)

except Exception as e:
parser.exit(type(e).__name__ + ': ' + str(e))

3.9 Using a stream in an asyncio26 coroutine

asyncio_coroutines.py27

#!/usr/bin/env python3
"""An example for using a stream in an asyncio coroutine.

This example shows how to create a stream in a coroutine and how to wait for
the completion of the stream.

You need Python 3.7 or newer to run this.

"""
import asyncio
import sys

import numpy as np
import sounddevice as sd

async def record_buffer(buffer, **kwargs):
loop = asyncio.get_event_loop()
event = asyncio.Event()
idx = 0

def callback(indata, frame_count, time_info, status):
nonlocal idx
if status:

print(status)
remainder = len(buffer) - idx
if remainder == 0:

loop.call_soon_threadsafe(event.set)
raise sd.CallbackStop

indata = indata[:remainder]
buffer[idx:idx + len(indata)] = indata
idx += len(indata)

stream = sd.InputStream(callback=callback, dtype=buffer.dtype,
channels=buffer.shape[1], **kwargs)

with stream:

(continues on next page)

26 https://docs.python.org/3/library/asyncio.html#module-asyncio
27 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/asyncio_coroutines.py

19

https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/asyncio_coroutines.py

(continued from previous page)

await event.wait()

async def play_buffer(buffer, **kwargs):
loop = asyncio.get_event_loop()
event = asyncio.Event()
idx = 0

def callback(outdata, frame_count, time_info, status):
nonlocal idx
if status:

print(status)
remainder = len(buffer) - idx
if remainder == 0:

loop.call_soon_threadsafe(event.set)
raise sd.CallbackStop

valid_frames = frame_count if remainder >= frame_count else remainder
outdata[:valid_frames] = buffer[idx:idx + valid_frames]
outdata[valid_frames:] = 0
idx += valid_frames

stream = sd.OutputStream(callback=callback, dtype=buffer.dtype,
channels=buffer.shape[1], **kwargs)

with stream:
await event.wait()

async def main(frames=150_000, channels=1, dtype='float32', **kwargs):
buffer = np.empty((frames, channels), dtype=dtype)
print('recording buffer ...')
await record_buffer(buffer, **kwargs)
print('playing buffer ...')
await play_buffer(buffer, **kwargs)
print('done')

if __name__ == "__main__":
try:

asyncio.run(main())
except KeyboardInterrupt:

sys.exit('\nInterrupted by user')

3.10 Creating an asyncio28 generator for audio blocks

asyncio_generators.py29

#!/usr/bin/env python3
"""Creating an asyncio generator for blocks of audio data.

This example shows how a generator can be used to analyze audio input blocks.
In addition, it shows how a generator can be created that yields not only input
blocks but also output blocks where audio data can be written to.

You need Python 3.7 or newer to run this.

"""
import asyncio

(continues on next page)

28 https://docs.python.org/3/library/asyncio.html#module-asyncio
29 https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/asyncio_generators.py

20

https://github.com/spatialaudio/python-sounddevice/blob/0.4.1/examples/asyncio_generators.py

(continued from previous page)

import queue
import sys

import numpy as np
import sounddevice as sd

async def inputstream_generator(channels=1, **kwargs):
"""Generator that yields blocks of input data as NumPy arrays."""
q_in = asyncio.Queue()
loop = asyncio.get_event_loop()

def callback(indata, frame_count, time_info, status):
loop.call_soon_threadsafe(q_in.put_nowait, (indata.copy(), status))

stream = sd.InputStream(callback=callback, channels=channels, **kwargs)
with stream:

while True:
indata, status = await q_in.get()
yield indata, status

async def stream_generator(blocksize, *, channels=1, dtype='float32',
pre_fill_blocks=10, **kwargs):

"""Generator that yields blocks of input/output data as NumPy arrays.

The output blocks are uninitialized and have to be filled with
appropriate audio signals.

"""
assert blocksize != 0
q_in = asyncio.Queue()
q_out = queue.Queue()
loop = asyncio.get_event_loop()

def callback(indata, outdata, frame_count, time_info, status):
loop.call_soon_threadsafe(q_in.put_nowait, (indata.copy(), status))
outdata[:] = q_out.get_nowait()

pre-fill output queue
for _ in range(pre_fill_blocks):

q_out.put(np.zeros((blocksize, channels), dtype=dtype))

stream = sd.Stream(blocksize=blocksize, callback=callback, dtype=dtype,
channels=channels, **kwargs)

with stream:
while True:

indata, status = await q_in.get()
outdata = np.empty((blocksize, channels), dtype=dtype)
yield indata, outdata, status
q_out.put_nowait(outdata)

async def print_input_infos(**kwargs):
"""Show minimum and maximum value of each incoming audio block."""
async for indata, status in inputstream_generator(**kwargs):

if status:
print(status)

print('min:', indata.min(), '\t', 'max:', indata.max())

(continues on next page)

21

(continued from previous page)

async def wire_coro(**kwargs):
"""Create a connection between audio inputs and outputs.

Asynchronously iterates over a stream generator and for each block
simply copies the input data into the output block.

"""
async for indata, outdata, status in stream_generator(**kwargs):

if status:
print(status)

outdata[:] = indata

async def main(**kwargs):
print('Some informations about the input signal:')
try:

await asyncio.wait_for(print_input_infos(), timeout=2)
except asyncio.TimeoutError:

pass
print('\nEnough of that, activating wire ...\n')
audio_task = asyncio.create_task(wire_coro(**kwargs))
for i in range(10, 0, -1):

print(i)
await asyncio.sleep(1)

audio_task.cancel()
try:

await audio_task
except asyncio.CancelledError:

print('\nwire was cancelled')

if __name__ == "__main__":
try:

asyncio.run(main(blocksize=1024))
except KeyboardInterrupt:

sys.exit('\nInterrupted by user')

4 Contributing

If you find bugs, errors, omissions or other things that need improvement, please create an issue or a pull request
at https://github.com/spatialaudio/python-sounddevice/. Contributions are always welcome!

4.1 Reporting Problems

When creating an issue at https://github.com/spatialaudio/python-sounddevice/issues, please make sure to provide
as much useful information as possible.

You can use Markdown formatting to show Python code, e.g.

I have created a script named `my_script.py`:

```python
import sounddevice as sd

fs = 48000
duration = 1.5

(continues on next page)

22

https://github.com/spatialaudio/python-sounddevice/
https://github.com/spatialaudio/python-sounddevice/issues


(continued from previous page)

data = sd.rec(int(duration * fs), channels=99)
sd.wait()
print(data.shape)
```

Please provide minimal code (remove everything that’s not necessary to show the problem), but make sure that
the code example still has everything that’s needed to run it, including all import statements.

You should of course also show what happens when you run your code, e.g.

Running my script, I got this error:

```
$ python3 my_script.py
Expression 'parameters->channelCount <= maxChans' failed in 'src/hostapi/alsa/pa_
→˓linux_alsa.c', line: 1514
Expression 'ValidateParameters( inputParameters, hostApi, StreamDirection_In )'
→˓failed in 'src/hostapi/alsa/pa_linux_alsa.c', line: 2818
Traceback (most recent call last):

File "my_script.py", line 6, in <module>
data = sd.rec(int(duration * fs), channels=99)

...
sounddevice.PortAudioError: Error opening InputStream: Invalid number of channels
→˓[PaErrorCode -9998]
```

Please remember to provide the full command invocation and the full output. You should only remove lines of
output when you know they are irrelevant.

You should also mention the operating system and host API you are using (e.g. “Linux/ALSA” or “macOS/Core
Audio” or “Windows/WASAPI”).

If your problem is related to a certain hardware device, you should provide the list of devices as reported by

python3 -m sounddevice

If your problem has to do with the version of the PortAudio library you are using, you should provide the output
of this script:

import sounddevice as sd
print(sd._libname)
print(sd.get_portaudio_version())

If you don’t want to clutter the issue description with a huge load of gibberish, you can use the <details>
HTML tag to show some content only on demand:

<details>

```
$ python3 -m sounddevice

0 Built-in Line Input, Core Audio (2 in, 0 out)
> 1 Built-in Digital Input, Core Audio (2 in, 0 out)
< 2 Built-in Output, Core Audio (0 in, 2 out)

3 Built-in Line Output, Core Audio (0 in, 2 out)
4 Built-in Digital Output, Core Audio (0 in, 2 out)

```

</details>

23

4.2 Development Installation

Instead of pip-installing the latest release from PyPI30, you should get the newest development version (a.k.a.
“master”) from Github31:

git clone --recursive https://github.com/spatialaudio/python-sounddevice.git
cd python-sounddevice
python3 -m pip install -e .

This way, your installation always stays up-to-date, even if you pull new changes from the Github repository.

Whenever the file sounddevice_build.py changes (either because you edited it or it was updated by pulling
from Github or switching branches), you have to run the last command again.

If you used the --recursive option when cloning, the dynamic libraries for macOS and Windows should
already be available. If not, you can get the submodule with:

git submodule update --init

4.3 Building the Documentation

If you make changes to the documentation, you can locally re-create the HTML pages using Sphinx32. You can
install it and a few other necessary packages with:

python3 -m pip install -r doc/requirements.txt

To (re-)build the HTML files, use:

python3 setup.py build_sphinx

The generated files will be available in the directory build/sphinx/html/.

5 API Documentation

Play and Record Sound with Python.

API overview:

• Convenience functions to play and record NumPy arrays: play(), rec(), playrec() and the
related functions wait(), stop(), get_status(), get_stream()

• Functions to get information about the available hardware: query_devices(),
query_hostapis(), check_input_settings(), check_output_settings()

• Module-wide default settings: default

• Platform-specific settings: AsioSettings, CoreAudioSettings, WasapiSettings

• PortAudio streams, using NumPy arrays: Stream, InputStream, OutputStream

• PortAudio streams, using Python buffer objects (NumPy not needed): RawStream,
RawInputStream, RawOutputStream

• Miscellaneous functions and classes: sleep(), get_portaudio_version(),
CallbackFlags, CallbackStop, CallbackAbort

Online documentation: https://python-sounddevice.readthedocs.io/

30 https://pypi.org/project/sounddevice/
31 https://github.com/spatialaudio/python-sounddevice/
32 http://sphinx-doc.org/

24

https://pypi.org/project/sounddevice/
https://github.com/spatialaudio/python-sounddevice/
http://sphinx-doc.org/
https://python-sounddevice.readthedocs.io/

5.1 Convenience Functions using NumPy Arrays

play Play back a NumPy array containing audio data.
rec Record audio data into a NumPy array.
playrec Simultaneous playback and recording of NumPy ar-

rays.
wait Wait for play()/rec()/playrec() to be fin-

ished.
stop Stop playback/recording.
get_status Get info about over-/underflows in

play()/rec()/playrec().
get_stream Get a reference to the current stream.

sounddevice.play(data, samplerate=None, mapping=None, blocking=False, loop=False,
**kwargs)

Play back a NumPy array containing audio data.

This is a convenience function for interactive use and for small scripts. It cannot be used for multiple
overlapping playbacks.

This function does the following steps internally:

• Call stop() to terminate any currently running invocation of play(), rec() and playrec().

• Create an OutputStream and a callback function for taking care of the actual playback.

• Start the stream.

• If blocking=True was given, wait until playback is done. If not, return immediately.

If you need more control (e.g. block-wise gapless playback, multiple overlapping playbacks, . . .),
you should explicitly create an OutputStream yourself. If NumPy is not available, you can use a
RawOutputStream.

Parameters

• data (array_like) – Audio data to be played back. The columns of a two-dimensional
array are interpreted as channels, one-dimensional arrays are treated as mono data. The
data types float64, float32, int32, int16, int8 and uint8 can be used. float64 data is
simply converted to float32 before passing it to PortAudio, because it’s not supported
natively.

• mapping (array_like, optional) – List of channel numbers (starting with 1) where the
columns of data shall be played back on. Must have the same length as number of
channels in data (except if data is mono, in which case the signal is played back on all
given output channels). Each channel number may only appear once in mapping.

• blocking (bool, optional) – If False (the default), return immediately (but playback
continues in the background), if True, wait until playback is finished. A non-blocking
invocation can be stopped with stop() or turned into a blocking one with wait().

• loop (bool, optional) – Play data in a loop.

Other Parameters samplerate, **kwargs – All parameters of OutputStream – except
channels, dtype, callback and finished_callback – can be used.

Notes

If you don’t specify the correct sampling rate (either with the samplerate argument or by assigning a value
to default.samplerate), the audio data will be played back, but it might be too slow or too fast!

See also:

rec(), playrec()

25

sounddevice.rec(frames=None, samplerate=None, channels=None, dtype=None, out=None, map-
ping=None, blocking=False, **kwargs)

Record audio data into a NumPy array.

This is a convenience function for interactive use and for small scripts.

This function does the following steps internally:

• Call stop() to terminate any currently running invocation of play(), rec() and playrec().

• Create an InputStream and a callback function for taking care of the actual recording.

• Start the stream.

• If blocking=True was given, wait until recording is done. If not, return immediately.

If you need more control (e.g. block-wise gapless recording, overlapping recordings, . . .), you should ex-
plicitly create an InputStream yourself. If NumPy is not available, you can use a RawInputStream.

Parameters

• frames (int, sometimes optional) – Number of frames to record. Not needed if out is
given.

• channels (int, optional) – Number of channels to record. Not needed if mapping or out
is given. The default value can be changed with default.channels.

• dtype (str or numpy.dtype, optional) – Data type of the recording. Not needed if out
is given. The data types float64, float32, int32, int16, int8 and uint8 can be used. For
dtype='float64', audio data is recorded in float32 format and converted after-
wards, because it’s not natively supported by PortAudio. The default value can be
changed with default.dtype.

• mapping (array_like, optional) – List of channel numbers (starting with 1) to record.
If mapping is given, channels is silently ignored.

• blocking (bool, optional) – If False (the default), return immediately (but recording
continues in the background), if True, wait until recording is finished. A non-blocking
invocation can be stopped with stop() or turned into a blocking one with wait().

Returns

numpy.ndarray or type(out) – The recorded data.

Note: By default (blocking=False), an array of data is returned which is still being
written to while recording! The returned data is only valid once recording has stopped. Use
wait() to make sure the recording is finished.

Other Parameters

• out (numpy.ndarray or subclass, optional) – If out is specified, the recorded data is
written into the given array instead of creating a new array. In this case, the arguments
frames, channels and dtype are silently ignored! If mapping is given, its length must
match the number of channels in out.

• samplerate, **kwargs – All parameters of InputStream – except callback and fin-
ished_callback – can be used.

Notes

If you don’t specify a sampling rate (either with the samplerate argument or by assigning a value
to default.samplerate), the default sampling rate of the sound device will be used (see
query_devices()).

See also:

26

play(), playrec()

sounddevice.playrec(data, samplerate=None, channels=None, dtype=None, out=None, in-
put_mapping=None, output_mapping=None, blocking=False, **kwargs)

Simultaneous playback and recording of NumPy arrays.

This function does the following steps internally:

• Call stop() to terminate any currently running invocation of play(), rec() and playrec().

• Create a Stream and a callback function for taking care of the actual playback and recording.

• Start the stream.

• If blocking=True was given, wait until playback/recording is done. If not, return immediately.

If you need more control (e.g. block-wise gapless playback and recording, realtime processing, . . .), you
should explicitly create a Stream yourself. If NumPy is not available, you can use a RawStream.

Parameters

• data (array_like) – Audio data to be played back. See play().

• channels (int, sometimes optional) – Number of input channels, see rec(). The num-
ber of output channels is obtained from data.shape.

• dtype (str or numpy.dtype, optional) – Input data type, see rec(). If dtype is not
specified, it is taken from data.dtype (i.e. default.dtype is ignored). The output
data type is obtained from data.dtype anyway.

• input_mapping, output_mapping (array_like, optional) – See the parameter mapping
of rec() and play(), respectively.

• blocking (bool, optional) – If False (the default), return immediately (but continue
playback/recording in the background), if True, wait until playback/recording is fin-
ished. A non-blocking invocation can be stopped with stop() or turned into a block-
ing one with wait().

Returns numpy.ndarray or type(out) – The recorded data. See rec().

Other Parameters

• out (numpy.ndarray or subclass, optional) – See rec().

• samplerate, **kwargs – All parameters of Stream – except channels, dtype, callback
and finished_callback – can be used.

Notes

If you don’t specify the correct sampling rate (either with the samplerate argument or by assigning a value
to default.samplerate), the audio data will be played back, but it might be too slow or too fast!

See also:

play(), rec()

sounddevice.wait(ignore_errors=True)
Wait for play()/rec()/playrec() to be finished.

Playback/recording can be stopped with a KeyboardInterrupt33.

Returns CallbackFlags or None – If at least one buffer over-/underrun happened during the last
playback/recording, a CallbackFlags object is returned.

See also:

get_status()

33 https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt

27

https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt

sounddevice.stop(ignore_errors=True)
Stop playback/recording.

This only stops play(), rec() and playrec(), but has no influence on streams created with Stream,
InputStream, OutputStream, RawStream, RawInputStream, RawOutputStream.

sounddevice.get_status()
Get info about over-/underflows in play()/rec()/playrec().

Returns CallbackFlags – A CallbackFlags object that holds information about the last
invocation of play(), rec() or playrec().

See also:

wait()

sounddevice.get_stream()
Get a reference to the current stream.

This applies only to streams created by calls to play(), rec() or playrec().

Returns Stream – An OutputStream, InputStream or Stream associated with the last
invocation of play(), rec() or playrec(), respectively.

5.2 Checking Available Hardware

query_devices Return information about available devices.
DeviceList A list with information about all available audio de-

vices.
query_hostapis Return information about available host APIs.
check_input_settings Check if given input device settings are supported.
check_output_settings Check if given output device settings are supported.

sounddevice.query_devices(device=None, kind=None)
Return information about available devices.

Information and capabilities of PortAudio devices. Devices may support input, output or both input and
output.

To find the default input/output device(s), use default.device.

Parameters

• device (int or str, optional) – Numeric device ID or device name substring(s). If speci-
fied, information about only the given device is returned in a single dictionary.

• kind ({‘input’, ‘output’}, optional) – If device is not specified and kind is 'input' or
'output', a single dictionary is returned with information about the default input or
output device, respectively.

Returns

dict or DeviceList – A dictionary with information about the given device or – if no argu-
ments were specified – a DeviceList containing one dictionary for each available device.
The dictionaries have the following keys:

'name' The name of the device.

'hostapi' The ID of the corresponding host API. Use query_hostapis() to get
information about a host API.

'max_input_channels', 'max_output_channels' The maximum number of
input/output channels supported by the device. See default.channels.

28

'default_low_input_latency', 'default_low_output_latency'
Default latency values for interactive performance. This is used if default.
latency (or the latency argument of playrec(), Stream etc.) is set to 'low'.

'default_high_input_latency', 'default_high_output_latency'
Default latency values for robust non-interactive applications (e.g. playing sound
files). This is used if default.latency (or the latency argument of playrec(),
Stream etc.) is set to 'high'.

'default_samplerate' The default sampling frequency of the device. This is used
if default.samplerate is not set.

Notes

The list of devices can also be displayed in a terminal:

python3 -m sounddevice

Examples

The returned DeviceList can be indexed and iterated over like any sequence type (yielding the above-
mentioned dictionaries), but it also has a special string representation which is shown when used in an
interactive Python session.

Each available device is listed on one line together with the corresponding device ID, which can be assigned
to default.device or used as device argument in play(), Stream etc.

The first character of a line is > for the default input device, < for the default output device and * for the
default input/output device. After the device ID and the device name, the corresponding host API name is
displayed. In the end of each line, the maximum number of input and output channels is shown.

On a GNU/Linux computer it might look somewhat like this:

>>> import sounddevice as sd
>>> sd.query_devices()

0 HDA Intel: ALC662 rev1 Analog (hw:0,0), ALSA (2 in, 2 out)
1 HDA Intel: ALC662 rev1 Digital (hw:0,1), ALSA (0 in, 2 out)
2 HDA Intel: HDMI 0 (hw:0,3), ALSA (0 in, 8 out)
3 sysdefault, ALSA (128 in, 128 out)
4 front, ALSA (0 in, 2 out)
5 surround40, ALSA (0 in, 2 out)
6 surround51, ALSA (0 in, 2 out)
7 surround71, ALSA (0 in, 2 out)
8 iec958, ALSA (0 in, 2 out)
9 spdif, ALSA (0 in, 2 out)

10 hdmi, ALSA (0 in, 8 out)

* 11 default, ALSA (128 in, 128 out)
12 dmix, ALSA (0 in, 2 out)
13 /dev/dsp, OSS (16 in, 16 out)

Note that ALSA provides access to some “real” and some “virtual” devices. The latter sometimes have a
ridiculously high number of (virtual) inputs and outputs.

On macOS, you might get something similar to this:

>>> sd.query_devices()
0 Built-in Line Input, Core Audio (2 in, 0 out)

> 1 Built-in Digital Input, Core Audio (2 in, 0 out)
< 2 Built-in Output, Core Audio (0 in, 2 out)
3 Built-in Line Output, Core Audio (0 in, 2 out)
4 Built-in Digital Output, Core Audio (0 in, 2 out)

29

class sounddevice.DeviceList
A list with information about all available audio devices.

This class is not meant to be instantiated by the user. Instead, it is returned by query_devices(). It
contains a dictionary for each available device, holding the keys described in query_devices().

This class has a special string representation that is shown as return value of query_devices() if used
in an interactive Python session. It will also be shown when using the print()34 function. Furthermore,
it can be obtained with repr()35 and str()36.

sounddevice.query_hostapis(index=None)
Return information about available host APIs.

Parameters index (int, optional) – If specified, information about only the given host API index
is returned in a single dictionary.

Returns

dict or tuple of dict – A dictionary with information about the given host API index or – if
no index was specified – a tuple containing one dictionary for each available host API. The
dictionaries have the following keys:

'name' The name of the host API.

'devices' A list of device IDs belonging to the host API. Use query_devices() to
get information about a device.

'default_input_device', 'default_output_device' The device ID of the
default input/output device of the host API. If no default input/output device exists for
the given host API, this is -1.

Note: The overall default device(s) – which can be overwritten by assigning to
default.device – take(s) precedence over default.hostapi and the infor-
mation in the abovementioned dictionaries.

See also:

query_devices()

sounddevice.check_input_settings(device=None, channels=None, dtype=None, ex-
tra_settings=None, samplerate=None)

Check if given input device settings are supported.

All parameters are optional, default settings are used for any unspecified parameters. If the settings are
supported, the function does nothing; if not, an exception is raised.

Parameters

• device (int or str, optional) – Device ID or device name substring(s), see default.
device.

• channels (int, optional) – Number of input channels, see default.channels.

• dtype (str or numpy.dtype, optional) – Data type for input samples, see default.
dtype.

• extra_settings (settings object, optional) – This can be used for host-API-specific input
settings. See default.extra_settings.

• samplerate (float, optional) – Sampling frequency, see default.samplerate.

sounddevice.check_output_settings(device=None, channels=None, dtype=None, ex-
tra_settings=None, samplerate=None)

Check if given output device settings are supported.

34 https://docs.python.org/3/library/functions.html#print
35 https://docs.python.org/3/library/functions.html#repr
36 https://docs.python.org/3/library/stdtypes.html#str

30

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/stdtypes.html#str

Same as check_input_settings(), just for output device settings.

5.3 Module-wide Default Settings

default Get/set defaults for the sounddevice module.

class sounddevice.default
Get/set defaults for the sounddevice module.

The attributes device, channels, dtype, latency and extra_settings accept single values
which specify the given property for both input and output. However, if the property differs between input
and output, pairs of values can be used, where the first value specifies the input and the second value specifies
the output. All other attributes are always single values.

Examples

>>> import sounddevice as sd
>>> sd.default.samplerate = 48000
>>> sd.default.dtype
['float32', 'float32']

Different values for input and output:

>>> sd.default.channels = 1, 2

A single value sets both input and output at the same time:

>>> sd.default.device = 5
>>> sd.default.device
[5, 5]

An attribute can be set to the “factory default” by assigning None:

>>> sd.default.samplerate = None
>>> sd.default.device = None, 4

Use reset() to reset all attributes:

>>> sd.default.reset()

device = (None, None)
Index or query string of default input/output device.

If not overwritten, this is queried from PortAudio.

If a string is given, the device is selected which contains all space-separated parts in the right order.
Each device string contains the name of the corresponding host API in the end. The string comparison
is case-insensitive.

See also:

query_devices()

channels = (None, None)
Number of input/output channels.

The maximum number of channels for a given device can be found out with query_devices().

dtype = ('float32', 'float32')
Data type used for input/output samples.

31

The types 'float32', 'int32', 'int16', 'int8' and 'uint8' can be used for all
streams and functions. Additionally, play(), rec() and playrec() support 'float64'
(for convenience, data is merely converted from/to 'float32') and RawInputStream,
RawOutputStream and RawStream support 'int24' (packed 24 bit format, which is not sup-
ported in NumPy!).

If NumPy is available, the corresponding numpy.dtype37 objects can be used as well.

The floating point representations 'float32' and 'float64' use +1.0 and -1.0 as the maximum
and minimum values, respectively. 'uint8' is an unsigned 8 bit format where 128 is considered
“ground”.

latency = ('high', 'high')
Suggested input/output latency in seconds.

The special values 'low' and 'high' can be used to select the default low/high latency of the
chosen device. 'high' is typically more robust (i.e. buffer under-/overflows are less likely), but the
latency may be too large for interactive applications.

See also:

query_devices()

extra_settings = (None, None)
Host-API-specific input/output settings.

See also:

AsioSettings, CoreAudioSettings, WasapiSettings

samplerate = None
Sampling frequency in Hertz (= frames per second).

See also:

query_devices()

blocksize = 0
See the blocksize argument of Stream.

clip_off = False
Disable clipping.

Set to True to disable default clipping of out of range samples.

dither_off = False
Disable dithering.

Set to True to disable default dithering.

never_drop_input = False
Set behavior for input overflow of full-duplex streams.

Set to True to request that where possible a full duplex stream will not discard overflowed in-
put samples without calling the stream callback. This flag is only valid for full-duplex callback
streams (i.e. only Stream and RawStream and only if callback was specified; this includes
playrec()) and only when used in combination with blocksize=0 (the default). Using this
flag incorrectly results in an error being raised. See also http://www.portaudio.com/docs/proposals/
001-UnderflowOverflowHandling.html.

prime_output_buffers_using_stream_callback = False
How to fill initial output buffers.

Set to True to call the stream callback to fill initial output buffers, rather than the default behavior
of priming the buffers with zeros (silence). This flag has no effect for input-only (InputStream
and RawInputStream) and blocking read/write streams (i.e. if callback wasn’t specified). See also
http://www.portaudio.com/docs/proposals/020-AllowCallbackToPrimeStream.html.

37 https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

32

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
http://www.portaudio.com/docs/proposals/001-UnderflowOverflowHandling.html
http://www.portaudio.com/docs/proposals/001-UnderflowOverflowHandling.html
http://www.portaudio.com/docs/proposals/020-AllowCallbackToPrimeStream.html

hostapi
Index of the default host API (read-only).

reset()
Reset all attributes to their “factory default”.

5.4 Platform-specific Settings

AsioSettings ASIO-specific input/output settings.
CoreAudioSettings Mac Core Audio-specific input/output settings.
WasapiSettings WASAPI-specific input/output settings.

class sounddevice.AsioSettings(channel_selectors)
ASIO-specific input/output settings.

Objects of this class can be used as extra_settings argument to Stream() (and variants) or as default.
extra_settings.

Parameters channel_selectors (list of int) – Support for opening only specific channels of an
ASIO device. channel_selectors is a list of integers specifying the (zero-based) channel
numbers to use. The length of channel_selectors must match the corresponding channels
parameter of Stream() (or variants), otherwise a crash may result. The values in the
channel_selectors array must specify channels within the range of supported channels.

Examples

Setting output channels when calling play():

>>> import sounddevice as sd
>>> asio_out = sd.AsioSettings(channel_selectors=[12, 13])
>>> sd.play(..., extra_settings=asio_out)

Setting default output channels:

>>> sd.default.extra_settings = asio_out
>>> sd.play(...)

Setting input channels as well:

>>> asio_in = sd.AsioSettings(channel_selectors=[8])
>>> sd.default.extra_settings = asio_in, asio_out
>>> sd.playrec(..., channels=1, ...)

class sounddevice.CoreAudioSettings(channel_map=None,
change_device_parameters=False,
fail_if_conversion_required=False, conver-
sion_quality=’max’)

Mac Core Audio-specific input/output settings.

Objects of this class can be used as extra_settings argument to Stream() (and variants) or as default.
extra_settings.

Parameters

• channel_map (sequence of int, optional) – Support for opening only specific channels
of a Core Audio device. Note that channel_map is treated differently between input and
output channels.

For input devices, channel_map is a list of integers specifying the (zero-based) channel
numbers to use.

33

For output devices, channel_map must have the same length as the number of output
channels of the device. Specify unused channels with -1, and a 0-based index for any
desired channels.

See the example below. For additional information, see the PortAudio documentation38.

• change_device_parameters (bool, optional) – If True, allows PortAudio to change
things like the device’s frame size, which allows for much lower latency, but might
disrupt the device if other programs are using it, even when you are just querying the
device. False is the default.

• fail_if_conversion_required (bool, optional) – In combination with the above flag,
True causes the stream opening to fail, unless the exact sample rates are supported by
the device.

• conversion_quality ({‘min’, ‘low’, ‘medium’, ‘high’, ‘max’}, optional) – This sets Core
Audio’s sample rate conversion quality. 'max' is the default.

Example

This example assumes a device having 6 input and 6 output channels. Input is from the second and fourth
channels, and output is to the device’s third and fifth channels:

>>> import sounddevice as sd
>>> ca_in = sd.CoreAudioSettings(channel_map=[1, 3])
>>> ca_out = sd.CoreAudioSettings(channel_map=[-1, -1, 0, -1, 1, -1])
>>> sd.playrec(..., channels=2, extra_settings=(ca_in, ca_out))

class sounddevice.WasapiSettings(exclusive=False)
WASAPI-specific input/output settings.

Objects of this class can be used as extra_settings argument to Stream() (and variants) or as
default.extra_settings. They can also be used in check_input_settings() and
check_output_settings().

Parameters exclusive (bool) – Exclusive mode allows to deliver audio data directly to hardware
bypassing software mixing.

Examples

Setting exclusive mode when calling play():

>>> import sounddevice as sd
>>> wasapi_exclusive = sd.WasapiSettings(exclusive=True)
>>> sd.play(..., extra_settings=wasapi_exclusive)

Setting exclusive mode as default:

>>> sd.default.extra_settings = wasapi_exclusive
>>> sd.play(...)

5.5 Streams using NumPy Arrays

Stream PortAudio stream for simultaneous input and output
(using NumPy).

InputStream PortAudio input stream (using NumPy).
OutputStream PortAudio output stream (using NumPy).

38 https://app.assembla.com/spaces/portaudio/git/source/master/src/hostapi/coreaudio/notes.txt

34

https://app.assembla.com/spaces/portaudio/git/source/master/src/hostapi/coreaudio/notes.txt

class sounddevice.Stream(samplerate=None, blocksize=None, device=None,
channels=None, dtype=None, latency=None, ex-
tra_settings=None, callback=None, finished_callback=None,
clip_off=None, dither_off=None, never_drop_input=None,
prime_output_buffers_using_stream_callback=None)

PortAudio stream for simultaneous input and output (using NumPy).

To open an input-only or output-only stream use InputStream or OutputStream, respectively.
If you want to handle audio data as plain buffer objects instead of NumPy arrays, use RawStream,
RawInputStream or RawOutputStream.

A single stream can provide multiple channels of real-time streaming audio input and output to a client
application. A stream provides access to audio hardware represented by one or more devices. Depending on
the underlying host API, it may be possible to open multiple streams using the same device, however this be-
havior is implementation defined. Portable applications should assume that a device may be simultaneously
used by at most one stream.

The arguments device, channels, dtype and latency can be either single values (which will be used for both
input and output parameters) or pairs of values (where the first one is the value for the input and the second
one for the output).

All arguments are optional, the values for unspecified parameters are taken from the default object. If
one of the values of a parameter pair is None, the corresponding value from default will be used instead.

The created stream is inactive (see active, stopped). It can be started with start().

Every stream object is also a context manager39, i.e. it can be used in a with statement40 to automatically
call start() in the beginning of the statement and stop() and close() on exit.

Parameters

• samplerate (float, optional) – The desired sampling frequency (for both input and out-
put). The default value can be changed with default.samplerate.

• blocksize (int, optional) – The number of frames passed to the stream callback func-
tion, or the preferred block granularity for a blocking read/write stream. The special
value blocksize=0 (which is the default) may be used to request that the stream
callback will receive an optimal (and possibly varying) number of frames based on host
requirements and the requested latency settings. The default value can be changed with
default.blocksize.

Note: With some host APIs, the use of non-zero blocksize for a callback stream may
introduce an additional layer of buffering which could introduce additional latency. Por-
tAudio guarantees that the additional latency will be kept to the theoretical minimum
however, it is strongly recommended that a non-zero blocksize value only be used when
your algorithm requires a fixed number of frames per stream callback.

• device (int or str or pair thereof, optional) – Device index(es) or query string(s) spec-
ifying the device(s) to be used. The default value(s) can be changed with default.
device.

• channels (int or pair of int, optional) – The number of channels of sound to be deliv-
ered to the stream callback or accessed by read() or write(). It can range from
1 to the value of 'max_input_channels' or 'max_output_channels' in
the dict returned by query_devices(). By default, the maximum possible num-
ber of channels for the selected device is used (which may not be what you want;
see query_devices()). The default value(s) can be changed with default.
channels.

39 https://docs.python.org/3/reference/datamodel.html#context-managers
40 https://docs.python.org/3/reference/compound_stmts.html#with

35

https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/reference/compound_stmts.html#with

• dtype (str or numpy.dtype or pair thereof, optional) – The sample format of the
numpy.ndarray41 provided to the stream callback, read() or write(). It may be
any of float32, int32, int16, int8, uint8. See numpy.dtype42. The float64 data type is
not supported, this is only supported for convenience in play()/rec()/playrec().
The packed 24 bit format 'int24' is only supported in the “raw” stream classes, see
RawStream. The default value(s) can be changed with default.dtype.

• latency (float or {‘low’, ‘high’} or pair thereof, optional) – The desired latency in sec-
onds. The special values 'low' and 'high' (latter being the default) select the default
low and high latency, respectively (see query_devices()). The default value(s)
can be changed with default.latency . Where practical, implementations should
configure their latency based on this parameter, otherwise they may choose the closest
viable latency instead. Unless the suggested latency is greater than the absolute upper
limit for the device, implementations should round the latency up to the next practical
value – i.e. to provide an equal or higher latency wherever possible. Actual latency
values for an open stream may be retrieved using the latency attribute.

• extra_settings (settings object or pair thereof, optional) – This can be used for host-
API-specific input/output settings. See default.extra_settings.

• callback (callable, optional) – User-supplied function to consume, process or generate
audio data in response to requests from an active stream. When a stream is running,
PortAudio calls the stream callback periodically. The callback function is responsible
for processing and filling input and output buffers, respectively.

If no callback is given, the stream will be opened in “blocking read/write” mode. In
blocking mode, the client can receive sample data using read() and write sample data
using write(), the number of frames that may be read or written without blocking is
returned by read_available and write_available, respectively.

The callback must have this signature:

callback(indata: ndarray, outdata: ndarray, frames: int,
time: CData, status: CallbackFlags) -> None

The first and second argument are the input and output buffer, respectively, as two-
dimensional numpy.ndarray43 with one column per channel (i.e. with a shape of
(frames, channels)) and with a data type specified by dtype. The output buffer
contains uninitialized data and the callback is supposed to fill it with proper audio data.
If no data is available, the buffer should be filled with zeros (e.g. by using outdata.
fill(0)).

Note: In Python, assigning to an identifier merely re-binds the identifier to another
object, so this will not work as expected:

outdata = my_data # Don't do this!

To actually assign data to the buffer itself, you can use indexing, e.g.:

outdata[:] = my_data

. . . which fills the whole buffer, or:

outdata[:, 1] = my_channel_data

. . . which only fills one channel.

41 https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
42 https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
43 https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

36

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

The third argument holds the number of frames to be processed by the stream callback.
This is the same as the length of the input and output buffers.

The forth argument provides a CFFI structure with timestamps indicating the ADC cap-
ture time of the first sample in the input buffer (time.inputBufferAdcTime),
the DAC output time of the first sample in the output buffer (time.
outputBufferDacTime) and the time the callback was invoked (time.
currentTime). These time values are expressed in seconds and are synchronised
with the time base used by time for the associated stream.

The fifth argument is a CallbackFlags instance indicating whether input and/or
output buffers have been inserted or will be dropped to overcome underflow or overflow
conditions.

If an exception is raised in the callback, it will not be called again. If CallbackAbort
is raised, the stream will finish as soon as possible. If CallbackStop is raised,
the stream will continue until all buffers generated by the callback have been played.
This may be useful in applications such as soundfile players where a specific duration
of output is required. If another exception is raised, its traceback is printed to sys.
stderr44. Exceptions are not propagated to the main thread, i.e. the main Python
program keeps running as if nothing had happened.

Note: The callback must always fill the entire output buffer, no matter if or which
exceptions are raised.

If no exception is raised in the callback, it automatically continues to be called until
stop(), abort() or close() are used to stop the stream.

The PortAudio stream callback runs at very high or real-time priority. It is required to
consistently meet its time deadlines. Do not allocate memory, access the file system,
call library functions or call other functions from the stream callback that may block or
take an unpredictable amount of time to complete. With the exception of cpu_load it
is not permissible to call PortAudio API functions from within the stream callback.

In order for a stream to maintain glitch-free operation the callback must consume and
return audio data faster than it is recorded and/or played. PortAudio anticipates that
each callback invocation may execute for a duration approaching the duration of frames
audio frames at the stream’s sampling frequency. It is reasonable to expect to be able to
utilise 70% or more of the available CPU time in the PortAudio callback. However, due
to buffer size adaption and other factors, not all host APIs are able to guarantee audio
stability under heavy CPU load with arbitrary fixed callback buffer sizes. When high
callback CPU utilisation is required the most robust behavior can be achieved by using
blocksize=0.

• finished_callback (callable, optional) – User-supplied function which will be called
when the stream becomes inactive (i.e. once a call to stop() will not block).

A stream will become inactive after the stream callback raises an exception or when
stop() or abort() is called. For a stream providing audio output, if the stream
callback raises CallbackStop, or stop() is called, the stream finished callback
will not be called until all generated sample data has been played. The callback must
have this signature:

finished_callback() -> None

• clip_off (bool, optional) – See default.clip_off.

• dither_off (bool, optional) – See default.dither_off.

• never_drop_input (bool, optional) – See default.never_drop_input.

44 https://docs.python.org/3/library/sys.html#sys.stderr

37

https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.stderr

• prime_output_buffers_using_stream_callback (bool, optional) – See default.
prime_output_buffers_using_stream_callback.

abort(ignore_errors=True)
Terminate audio processing immediately.

This does not wait for pending buffers to complete.

See also:

start(), stop()

active
True when the stream is active, False otherwise.

A stream is active after a successful call to start(), until it becomes inactive either as a result of a
call to stop() or abort(), or as a result of an exception raised in the stream callback. In the latter
case, the stream is considered inactive after the last buffer has finished playing.

See also:

stopped

blocksize
Number of frames per block.

The special value 0 means that the blocksize can change between blocks. See the blocksize argument
of Stream.

channels
The number of input/output channels.

close(ignore_errors=True)
Close the stream.

If the audio stream is active any pending buffers are discarded as if abort() had been called.

closed
True after a call to close(), False otherwise.

cpu_load
CPU usage information for the stream.

The “CPU Load” is a fraction of total CPU time consumed by a callback stream’s audio processing
routines including, but not limited to the client supplied stream callback. This function does not work
with blocking read/write streams.

This may be used in the stream callback function or in the application. It provides a floating point
value, typically between 0.0 and 1.0, where 1.0 indicates that the stream callback is consuming the
maximum number of CPU cycles possible to maintain real-time operation. A value of 0.5 would
imply that PortAudio and the stream callback was consuming roughly 50% of the available CPU time.
The value may exceed 1.0. A value of 0.0 will always be returned for a blocking read/write stream, or
if an error occurs.

device
IDs of the input/output device.

dtype
Data type of the audio samples.

See also:

default.dtype, samplesize

latency
The input/output latency of the stream in seconds.

This value provides the most accurate estimate of input/output latency available to the implementation.
It may differ significantly from the latency value(s) passed to Stream().

38

read(frames)
Read samples from the stream into a NumPy array.

The function doesn’t return until all requested frames have been read – this may involve waiting for
the operating system to supply the data (except if no more than read_available frames were
requested).

This is the same as RawStream.read(), except that it returns a NumPy array instead of a plain
Python buffer object.

Parameters frames (int) – The number of frames to be read. This parameter is not con-
strained to a specific range, however high performance applications will want to match
this parameter to the blocksize parameter used when opening the stream.

Returns

• data (numpy.ndarray) – A two-dimensional numpy.ndarray45 with one column
per channel (i.e. with a shape of (frames, channels)) and with a data type
specified by dtype.

• overflowed (bool) – True if input data was discarded by PortAudio after the previous
call and before this call.

read_available
The number of frames that can be read without waiting.

Returns a value representing the maximum number of frames that can be read from the stream without
blocking or busy waiting.

samplerate
The sampling frequency in Hertz (= frames per second).

In cases where the hardware sampling frequency is inaccurate and PortAudio is aware of it, the value
of this field may be different from the samplerate parameter passed to Stream(). If information
about the actual hardware sampling frequency is not available, this field will have the same value as
the samplerate parameter passed to Stream().

samplesize
The size in bytes of a single sample.

See also:

dtype

start()
Commence audio processing.

See also:

stop(), abort()

stop(ignore_errors=True)
Terminate audio processing.

This waits until all pending audio buffers have been played before it returns.

See also:

start(), abort()

stopped
True when the stream is stopped, False otherwise.

A stream is considered to be stopped prior to a successful call to start() and after a successful call
to stop() or abort(). If a stream callback is cancelled (by raising an exception) the stream is not
considered to be stopped.

See also:
45 https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

39

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

active

time
The current stream time in seconds.

This is according to the same clock used to generate the timestamps passed with the time argument
to the stream callback (see the callback argument of Stream). The time values are monotonically
increasing and have unspecified origin.

This provides valid time values for the entire life of the stream, from when the stream is opened until
it is closed. Starting and stopping the stream does not affect the passage of time as provided here.

This time may be used for synchronizing other events to the audio stream, for example synchronizing
audio to MIDI.

write(data)
Write samples to the stream.

This function doesn’t return until the entire buffer has been consumed – this may involve waiting for
the operating system to consume the data (except if data contains no more than write_available
frames).

This is the same as RawStream.write(), except that it expects a NumPy array instead of a plain
Python buffer object.

Parameters data (array_like) – A two-dimensional array-like object with one column per
channel (i.e. with a shape of (frames, channels)) and with a data type specified
by dtype. A one-dimensional array can be used for mono data. The array layout must
be C-contiguous (see numpy.ascontiguousarray()46).

The length of the buffer is not constrained to a specific range, however high performance
applications will want to match this parameter to the blocksize parameter used when
opening the stream.

Returns underflowed (bool) – True if additional output data was inserted after the previ-
ous call and before this call.

write_available
The number of frames that can be written without waiting.

Returns a value representing the maximum number of frames that can be written to the stream without
blocking or busy waiting.

class sounddevice.InputStream(samplerate=None, blocksize=None, device=None,
channels=None, dtype=None, latency=None, ex-
tra_settings=None, callback=None, finished_callback=None,
clip_off=None, dither_off=None, never_drop_input=None,
prime_output_buffers_using_stream_callback=None)

PortAudio input stream (using NumPy).

This has the same methods and attributes as Stream, except write() and write_available. Fur-
thermore, the stream callback is expected to have a different signature (see below).

Parameters callback (callable) – User-supplied function to consume audio in response to re-
quests from an active stream. The callback must have this signature:

callback(indata: numpy.ndarray, frames: int,
time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of Stream, except that outdata is
missing.

See also:

Stream, RawInputStream
46 https://numpy.org/doc/stable/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray

40

https://numpy.org/doc/stable/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray

class sounddevice.OutputStream(samplerate=None, blocksize=None, de-
vice=None, channels=None, dtype=None,
latency=None, extra_settings=None, call-
back=None, finished_callback=None, clip_off=None,
dither_off=None, never_drop_input=None,
prime_output_buffers_using_stream_callback=None)

PortAudio output stream (using NumPy).

This has the same methods and attributes as Stream, except read() and read_available. Further-
more, the stream callback is expected to have a different signature (see below).

Parameters callback (callable) – User-supplied function to generate audio data in response to
requests from an active stream. The callback must have this signature:

callback(outdata: numpy.ndarray, frames: int,
time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of Stream, except that indata is
missing.

See also:

Stream, RawOutputStream

5.6 Raw Streams

RawStream PortAudio input/output stream (using buffer objects).
RawInputStream PortAudio input stream (using buffer objects).
RawOutputStream PortAudio output stream (using buffer objects).

class sounddevice.RawStream(samplerate=None, blocksize=None, device=None,
channels=None, dtype=None, latency=None, ex-
tra_settings=None, callback=None, finished_callback=None,
clip_off=None, dither_off=None, never_drop_input=None,
prime_output_buffers_using_stream_callback=None)

PortAudio input/output stream (using buffer objects).

This is the same as Stream, except that the callback function and read()/write() work on plain
Python buffer objects instead of on NumPy arrays. NumPy is not necessary for using this.

To open a “raw” input-only or output-only stream use RawInputStream or RawOutputStream, re-
spectively. If you want to handle audio data as NumPy arrays instead of buffer objects, use Stream,
InputStream or OutputStream.

Parameters

• dtype (str or pair of str) – The sample format of the buffers provided to the
stream callback, read() or write(). In addition to the formats supported by
Stream ('float32', 'int32', 'int16', 'int8', 'uint8'), this also sup-
ports 'int24', i.e. packed 24 bit format. The default value can be changed with
default.dtype. See also samplesize.

• callback (callable) – User-supplied function to consume, process or generate audio data
in response to requests from an active stream. The callback must have this signature:

callback(indata: buffer, outdata: buffer, frames: int,
time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of Stream, except that indata
and outdata are plain Python buffer objects instead of NumPy arrays.

See also:

41

RawInputStream, RawOutputStream, Stream

read(frames)
Read samples from the stream into a buffer.

This is the same as Stream.read(), except that it returns a plain Python buffer object instead of a
NumPy array. NumPy is not necessary for using this.

Parameters frames (int) – The number of frames to be read. See Stream.read().

Returns

• data (buffer) – A buffer of interleaved samples. The buffer contains samples in the
format specified by the dtype parameter used to open the stream, and the number of
channels specified by channels. See also samplesize.

• overflowed (bool) – See Stream.read().

write(data)
Write samples to the stream.

This is the same as Stream.write(), except that it expects a plain Python buffer object instead of
a NumPy array. NumPy is not necessary for using this.

Parameters data (buffer or bytes or iterable of int) – A buffer of interleaved samples. The
buffer contains samples in the format specified by the dtype argument used to open the
stream, and the number of channels specified by channels. The length of the buffer is
not constrained to a specific range, however high performance applications will want to
match this parameter to the blocksize parameter used when opening the stream. See also
samplesize.

Returns underflowed (bool) – See Stream.write().

class sounddevice.RawInputStream(samplerate=None, blocksize=None, de-
vice=None, channels=None, dtype=None,
latency=None, extra_settings=None, call-
back=None, finished_callback=None, clip_off=None,
dither_off=None, never_drop_input=None,
prime_output_buffers_using_stream_callback=None)

PortAudio input stream (using buffer objects).

This is the same as InputStream, except that the callback function and read() work on plain Python
buffer objects instead of on NumPy arrays. NumPy is not necessary for using this.

Parameters

• dtype (str) – See RawStream.

• callback (callable) – User-supplied function to consume audio data in response to re-
quests from an active stream. The callback must have this signature:

callback(indata: buffer, frames: int,
time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of RawStream, except that
outdata is missing.

See also:

RawStream, Stream

class sounddevice.RawOutputStream(samplerate=None, blocksize=None, de-
vice=None, channels=None, dtype=None,
latency=None, extra_settings=None, call-
back=None, finished_callback=None, clip_off=None,
dither_off=None, never_drop_input=None,
prime_output_buffers_using_stream_callback=None)

PortAudio output stream (using buffer objects).

42

This is the same as OutputStream, except that the callback function and write()work on plain Python
buffer objects instead of on NumPy arrays. NumPy is not necessary for using this.

Parameters

• dtype (str) – See RawStream.

• callback (callable) – User-supplied function to generate audio data in response to re-
quests from an active stream. The callback must have this signature:

callback(outdata: buffer, frames: int,
time: CData, status: CallbackFlags) -> None

The arguments are the same as in the callback parameter of RawStream, except that
indata is missing.

See also:

RawStream, Stream

5.7 Miscellaneous

sleep Put the caller to sleep for at least msec milliseconds.
get_portaudio_version Get version information for the PortAudio library.
CallbackFlags Flag bits for the status argument to a stream callback.
CallbackStop Exception to be raised by the user to stop callback

processing.
CallbackAbort Exception to be raised by the user to abort callback

processing.
PortAudioError This exception will be raised on PortAudio errors.

sounddevice.sleep(msec)
Put the caller to sleep for at least msec milliseconds.

The function may sleep longer than requested so don’t rely on this for accurate musical timing.

sounddevice.get_portaudio_version()
Get version information for the PortAudio library.

Returns the release number and a textual description of the current PortAudio build, e.g.

(1899, 'PortAudio V19-devel (built Feb 15 2014 23:28:00)')

class sounddevice.CallbackFlags(flags=0)
Flag bits for the status argument to a stream callback.

If you experience under-/overflows, you can try to increase the latency and/or blocksize settings.
You should also avoid anything that could block the callback function for a long time, e.g. extensive com-
putations, waiting for another thread, reading/writing files, network connections, etc.

See also:

Stream

Examples

This can be used to collect the errors of multiple status objects:

>>> import sounddevice as sd
>>> errors = sd.CallbackFlags()
>>> errors |= status1

(continues on next page)

43

(continued from previous page)

>>> errors |= status2
>>> errors |= status3
>>> # and so on ...
>>> errors.input_overflow
True

The values may also be set and cleared by the user:

>>> import sounddevice as sd
>>> cf = sd.CallbackFlags()
>>> cf
<sounddevice.CallbackFlags: no flags set>
>>> cf.input_underflow = True
>>> cf
<sounddevice.CallbackFlags: input underflow>
>>> cf.input_underflow = False
>>> cf
<sounddevice.CallbackFlags: no flags set>

input_underflow
Input underflow.

In a stream opened with blocksize=0, indicates that input data is all silence (zeros) because no
real data is available. In a stream opened with a non-zero blocksize, it indicates that one or more zero
samples have been inserted into the input buffer to compensate for an input underflow.

This can only happen in full-duplex streams (including playrec()).

input_overflow
Input overflow.

In a stream opened with blocksize=0, indicates that data prior to the first sample of the input buffer
was discarded due to an overflow, possibly because the stream callback is using too much CPU time.
In a stream opened with a non-zero blocksize, it indicates that data prior to one or more samples in the
input buffer was discarded.

This can happen in full-duplex and input-only streams (including playrec() and rec()).

output_underflow
Output underflow.

Indicates that output data (or a gap) was inserted, possibly because the stream callback is using too
much CPU time.

This can happen in full-duplex and output-only streams (including playrec() and play()).

output_overflow
Output overflow.

Indicates that output data will be discarded because no room is available.

This can only happen in full-duplex streams (including playrec()), but only when
never_drop_input=True was specified. See default.never_drop_input.

priming_output
Priming output.

Some of all of the output data will be used to prime the stream, input data may be zero.

This will only take place with some of the host APIs, and only if
prime_output_buffers_using_stream_callback=True was specified. See
default.prime_output_buffers_using_stream_callback.

class sounddevice.CallbackStop
Exception to be raised by the user to stop callback processing.

44

If this is raised in the stream callback, the callback will not be invoked anymore (but all pending audio
buffers will be played).

See also:

CallbackAbort, Stream.stop(), Stream

class sounddevice.CallbackAbort
Exception to be raised by the user to abort callback processing.

If this is raised in the stream callback, all pending buffers are discarded and the callback will not be invoked
anymore.

See also:

CallbackStop, Stream.abort(), Stream

class sounddevice.PortAudioError
This exception will be raised on PortAudio errors.

args
A variable length tuple containing the following elements when available:

1) A string describing the error

2) The PortAudio PaErrorCode value

3) A 3-tuple containing the host API index, host error code, and the host error message (which may
be an empty string)

5.8 Expert Mode

_initialize Initialize PortAudio.
_terminate Terminate PortAudio.
_split Split input/output value into two values.
_StreamBase Base class for PortAudio streams.

sounddevice._initialize()
Initialize PortAudio.

This temporarily forwards messages from stderr to /dev/null (where supported).

In most cases, this doesn’t have to be called explicitly, because it is automatically called with the import
sounddevice statement.

sounddevice._terminate()
Terminate PortAudio.

In most cases, this doesn’t have to be called explicitly.

sounddevice._split(value)
Split input/output value into two values.

This can be useful for generic code that allows using the same value for input and output but also a pair of
two separate values.

class sounddevice._StreamBase(kind, samplerate=None, blocksize=None, device=None,
channels=None, dtype=None, latency=None, ex-
tra_settings=None, callback=None, finished_callback=None,
clip_off=None, dither_off=None, never_drop_input=None,
prime_output_buffers_using_stream_callback=None, user-
data=None, wrap_callback=None)

Base class for PortAudio streams.

This class should only be used by library authors who want to create their own custom stream classes.
Most users should use the derived classes Stream, InputStream, OutputStream, RawStream,

45

RawInputStream and RawOutputStream instead.

This class has the same properties and methods as Stream, except for read_available/read() and
write_available/write().

It can be created with the same parameters as Stream, except that there are three additional parameters
and the callback parameter also accepts a C function pointer.

Parameters

• kind ({‘input’, ‘output’, ‘duplex’}) – The desired type of stream: for recording, play-
back or both.

• callback (Python callable or CData function pointer, optional) – If wrap_callback is
None this can be a function pointer provided by CFFI. Otherwise, it has to be a Python
callable.

• wrap_callback ({‘array’, ‘buffer’}, optional) – If callback is a Python callable, this
selects whether the audio data is provided as NumPy array (like in Stream) or as
Python buffer object (like in RawStream).

• userdata (CData void pointer) – This is passed to the underlying C callback function
on each call and can only be accessed from a callback provided as CData function
pointer.

Examples

A usage example of this class can be seen at https://github.com/spatialaudio/python-rtmixer.

6 Version History

0.4.1 (2020-09-26):

• CallbackFlags attributes are now writable

0.4.0 (2020-07-18):

• Drop support for Python 2.x

• Fix memory issues in play(), rec() and playrec()

• Example application play_stream.py

0.3.15 (2020-03-18):

• This will be the last release supporting Python 2.x!

0.3.14 (2019-09-25):

• Examples play_sine.py and rec_gui.py

• Redirect stderr only during initialization

0.3.13 (2019-02-27):

• Examples asyncio_coroutines.py and asyncio_generators.py

0.3.12 (2018-09-02):

• Support for the dylib from Anaconda

0.3.11 (2018-05-07):

• Support for the DLL from conda-forge

0.3.10 (2017-12-22):

• Change the way how the PortAudio library is located

46

https://github.com/spatialaudio/python-rtmixer

0.3.9 (2017-10-25):

• Add Stream.closed

• Switch CFFI usage to “out-of-line ABI” mode

0.3.8 (2017-07-11):

• Add more ignore_errors arguments

• Add PortAudioError.args

• Add CoreAudioSettings

0.3.7 (2017-02-16):

• Add get_stream()

• Support for CData function pointers as callbacks

0.3.6 (2016-12-19):

• Example application play_long_file.py

0.3.5 (2016-09-12):

• Add extra_settings option for host-API-specific stream settings

• Add AsioSettings and WasapiSettings

0.3.4 (2016-08-05):

• Example application rec_unlimited.py

0.3.3 (2016-04-11):

• Add loop argument to play()

0.3.2 (2016-03-16):

• mapping=[1] works now on all host APIs

• Example application plot_input.py showing the live microphone signal(s)

• Device substrings are now allowed in query_devices()

0.3.1 (2016-01-04):

• Add check_input_settings() and check_output_settings()

• Send PortAudio output to /dev/null (on Linux and OSX)

0.3.0 (2015-10-28):

• Remove print_devices(), query_devices() can be used instead, since it now returns a
DeviceList object.

0.2.2 (2015-10-21):

• Devices can now be selected by substrings of device name and host API name

0.2.1 (2015-10-08):

• Example applications wire.py (based on PortAudio’s patest_wire.c) and spectrogram.py
(based on code by Mauris Van Hauwe)

0.2.0 (2015-07-03):

• Support for wheels including a dylib for Mac OS X and DLLs for Windows. The code for creating the
wheels is largely taken from PySoundFile47.

• Remove logging (this seemed too intrusive)

• Return callback status from wait() and add the new function get_status()
47 https://github.com/bastibe/SoundFile/

47

https://github.com/bastibe/SoundFile/

• playrec(): Rename the arguments input_channels and input_dtype to channels and dtype, respec-
tively

0.1.0 (2015-06-20): Initial release. Some ideas are taken from PySoundCard48. Thanks to Bastian Bechtold for
many fruitful discussions during the development of several features which python-sounddevice inherited
from there.

48 https://github.com/bastibe/PySoundCard/

48

https://github.com/bastibe/PySoundCard/

	Installation
	Usage
	Playback
	Recording
	Simultaneous Playback and Recording
	Device Selection
	Callback Streams
	Blocking Read/Write Streams

	Example Programs
	Play a Sound File
	Play a Very Long Sound File
	Play a Web Stream
	Play a Sine Signal
	Input to Output Pass-Through
	Plot Microphone Signal(s) in Real-Time
	Real-Time Text-Mode Spectrogram
	Recording with Arbitrary Duration
	Using a stream in an asyncio coroutine
	Creating an asyncio generator for audio blocks

	Contributing
	Reporting Problems
	Development Installation
	Building the Documentation

	API Documentation
	Convenience Functions using NumPy Arrays
	Checking Available Hardware
	Module-wide Default Settings
	Platform-specific Settings
	Streams using NumPy Arrays
	Raw Streams
	Miscellaneous
	Expert Mode

	Version History

