Usage

First, import the module:

import sounddevice as sd

Playback

Assuming you have a NumPy array named myarray holding audio data with a sampling frequency of fs (in the most cases this will be 44100 or 48000 frames per second), you can play it back with sounddevice.play():

sd.play(myarray, fs)

This function returns immediately but continues playing the audio signal in the background. You can stop playback with sounddevice.stop():

sd.stop()

If you know that you will use the same sampling frequency for a while, you can set it as default using sounddevice.default.samplerate:

sd.default.samplerate = fs

After that, you can drop the samplerate argument:

sd.play(myarray)

Recording

To record audio data from your sound device into a NumPy array, use sounddevice.rec():

duration = 10.5  # seconds
myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=2)

Again, for repeated use you can set defaults using sounddevice.default:

sd.default.samplerate = fs
sd.default.channels = 2

After that, you can drop the additional arguments:

myrecording = sd.rec(int(duration * fs))

This function also returns immediately but continues recording in the background. In the meantime, you can run other commands. If you want to check if the recording is finished, you should use sounddevice.wait():

sd.wait()

If the recording was already finished, this returns immediately; if not, it waits and returns as soon as the recording is finished.

Alternatively, you could have used the blocking argument in the first place:

myrecording = sd.rec(duration * fs, blocking=True)

By default, the recorded array has the data type 'float32' (see sounddevice.default.dtype), but this can be changed with the dtype argument:

myrecording = sd.rec(duration * fs, dtype='float64')

Simultaneous Playback and Recording

To play back an array and record at the same time, use sounddevice.playrec():

myrecording = sd.playrec(myarray, fs, channels=2)

The number of output channels is obtained from myarray, but the number of input channels still has to be specified.

Again, default values can be used:

sd.default.samplerate = fs
sd.default.channels = 2
myrecording = sd.playrec(myarray)

In this case the number of output channels is still taken from myarray (which may or may not have 2 channels), but the number of input channels is taken from sounddevice.default.channels.

Device Selection

In many cases, the default input/output device(s) will be the one(s) you want, but it is of course possible to choose a different device. Use sounddevice.query_devices() to get a list of supported devices. The same list can be obtained from a terminal by typing the command

python3 -m sounddevice

You can use the corresponding device ID to select a desired device by assigning to sounddevice.default.device or by passing it as device argument to sounddevice.play(), sounddevice.Stream() etc.

Instead of the numerical device ID, you can also use a space-separated list of case-insensitive substrings of the device name (and the host API name, if needed). See sounddevice.default.device for details.

import sounddevice as sd
sd.default.samplerate = 44100
sd.default.device = 'digital output'
sd.play(myarray)

Callback Streams

Callback “wire” with sounddevice.Stream:

import sounddevice as sd
duration = 5.5  # seconds

def callback(indata, outdata, frames, time, status):
    if status:
        print(status)
    outdata[:] = indata

with sd.Stream(channels=2, callback=callback):
    sd.sleep(int(duration * 1000))

Same thing with sounddevice.RawStream:

import sounddevice as sd
duration = 5.5  # seconds

def callback(indata, outdata, frames, time, status):
    if status:
        print(status)
    outdata[:] = indata

with sd.RawStream(channels=2, dtype='int24', callback=callback):
    sd.sleep(int(duration * 1000))

Note

We are using 24-bit samples here for no particular reason (just because we can).

Blocking Read/Write Streams

Instead of using a callback function, you can also use the blocking methods sounddevice.Stream.read() and sounddevice.Stream.write() (and of course the corresponding methods in sounddevice.InputStream, sounddevice.OutputStream, sounddevice.RawStream, sounddevice.RawInputStream and sounddevice.RawOutputStream).